Many transfection techniques can deliver biomolecules into cells, but the dose cannot be controlled precisely. Delivering well-defined amounts of materials into cells is important for various biological studies and therapeutic applications. Here, we show that nanochannel electroporation can deliver precise amounts of a variety of transfection agents into living cells. The device consists of two microchannels connected by a nanochannel. The cell to be transfected is positioned in one microchannel using optical tweezers, and the transfection agent is located in the second microchannel. Delivering a voltage pulse between the microchannels produces an intense electric field over a very small area on the cell membrane, allowing a precise amount of transfection agent to be electrophoretically driven through the nanochannel, the cell membrane and into the cell cytoplasm, without affecting cell viability. Dose control is achieved by adjusting the duration and number of pulses. The nanochannel electroporation device is expected to have high-throughput delivery applications.
Recent experimental evidence has motivated us to present a set of new theoretical considerations and to provide a rationale for interpreting the intriguing flow phenomena observed in entangled polymer solutions and melts [P. Tapadia and S. Q. Wang, Phys. Rev. Lett. 96, 016001 (2006); 96, 196001 (2006); S. Q. Wang et al., ibid. 97, 187801 (2006)]. Three forces have been recognized to play important roles in controlling the response of a strained entanglement network. During flow, an intermolecular locking force f(iml) arises and causes conformational deformation in each load-bearing strand between entanglements. The chain deformation builds up a retractive force f(retract) within each strand. Chain entanglement prevails in quiescence because a given chain prefers to stay interpenetrating into other chains within its pervaded volume so as to enjoy maximum conformational entropy. Since each strand of length l(ent) has entropy equal to k(B)T, the disentanglement criterion is given by f(retract)>f(ent) approximately k(B)Tl(ent) in the case of interrupted deformation. This condition identifies f(ent) as a cohesive force. Imbalance among these forces causes elastic breakdown of the entanglement network. For example, an entangled polymer yields during continuous deformation when the declining f(iml) cannot sustain the elevated f(retract). This opposite trend of the two forces is at the core of the physics governing a "cohesive" breakdown at the yield point (i.e., the stress overshoot) in startup flow. Identifying the yield point as the point of force imbalance, we can also rationalize the recently observed striking scaling behavior associated with the yield point in continuous deformation of both shear and extension.
We experimentally investigate the flow of hydrolyzed polyacrylamide (HPAM) solution with and without salt in model porous media at high Weissenberg numbers (Wi > 1.0). The effect of pore shapes on the flow pattern and pressure drop is explored by using periodic arrays of circular and square pillars in aligned and staggered layouts. In the apparent shear-thinning regime, we observe stationary dead zones upstream of the pillars. In addition, we confirm that the size of stationary dead zones correlates with the level of shear-thinning, by varying the amount of salt in HPAM solution. At higher shear rates (or Wi), these dead zones are periodically washed away. We present the mechanism of this elastic instability and characterize it based on the pressure drop fluctuation spectral density.
This work studies the most basic and important behavior of entangled linear polymer melts in sudden large shear deformations. In particular, melt elasticity resulting from the large step shear is extensively shown to produce cohesive breakdown. Unlike entangled solutions studied in Macromolecules 2007, 40, 8031, the residual elastic forces in sheared melts struggle quiescently for a significant induction period before bringing down the entanglement network. The induction time for the elastic yielding can be much longer than the longest Rouse relaxation time τ R , making it difficult to associate this cohesive failure with a chain retraction process envisioned in the tube theory. The cohesive failure also occurs upon a step strain produced at rates too slow to produce chain stretching, again making it unreasonable to invoke the concept of chain retraction due to chain stretching.
Five entangled melts, with the number of entanglements per chain ranging from 25 to 160, have been studied to illustrate how cohesive strength can be overcome in either continuous or interrupted extension (i.e., during or after uniaxial stretching). The internal elastic stress due to chain deformation from imposed strain appears to be the cause of the observed yielding behavior that reveals scaling laws. The visual signature of the elastic breakup is the occurrence of nonuniform extension. The yield phenomena may be understood at a force level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.