Tumor‐infiltrating myeloid cells are the most abundant leukocyte population within tumors. Molecular cues from the tumor microenvironment promote the differentiation of immature myeloid cells toward an immunosuppressive phenotype. However, the in situ dynamics of the transcriptional reprogramming underlying this process are poorly understood. Therefore, we applied single cell RNA‐seq (scRNA‐seq) to computationally investigate the cellular composition and transcriptional dynamics of tumor and adjacent normal tissues from 4 early‐stage non‐small cell lung cancer (NSCLC) patients. Our scRNA‐seq analyses identified 11 485 cells that varied in identity and gene expression traits between normal and tumor tissues. Among these, myeloid cell populations exhibited the most diverse changes between tumor and normal tissues, consistent with tumor‐mediated reprogramming. Through trajectory analysis, we identified a differentiation path from CD14+ monocytes to M2 macrophages (monocyte‐to‐M2). This differentiation path was reproducible across patients, accompanied by increased expression of genes (eg, MRC1/CD206, MSR1/CD204, PPARG, TREM2) with significantly enriched functions (Oxidative phosphorylation and P53 pathway) and decreased expression of genes (eg, CXCL2, IL1B) with significantly enriched functions (TNF‐α signaling via NF‐κB and inflammatory response). Our analysis further identified a co‐regulatory network implicating upstream transcription factors (JUN, NFKBIA) in monocyte‐to‐M2 differentiation, and activated ligand‐receptor interactions (eg, SFTPA1‐TLR2, ICAM1‐ITGAM) suggesting intratumoral mechanisms whereby epithelial cells stimulate monocyte‐to‐M2 differentiation. Overall, our study identified the prevalent monocyte‐to‐M2 differentiation in NSCLC, accompanied by an intricate transcriptional reprogramming mediated by specific transcriptional activators and intercellular crosstalk involving ligand‐receptor interactions.
Long-term quality of life (QOL) in patients undergoing laparoscopic cholecystectomy (LC) incurring bile duct injury (BDI) and repair is comparable to that of patients undergoing uncomplicated LC.
Lung cancer is the most common cause of superior vena cava syndrome (SVCS) and requires timely recognition and management. The syndrome is rarely an oncologic emergency in the absence of tracheal compression and airway compromise. Treatment depends on the etiology of the obstructive process. Treatment should also be individualized and should not be undertaken until a diagnosis is obtained. Most patients with SVCS secondary to lung cancer can be treated with appropriately directed chemotherapy or radiotherapy. With the refinement of endovascular stents, percutaneous stenting of the SVC is being increasingly used as primary treatment modality. Thrombotic occlusion can be treated with appropriate lytic agents. In rare circumstances, surgical decompression can be performed; bypass or replacement of the SVC results in immediate improvement in the majority of cases and can be accomplished with low morbidity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.