Abstract. Electron-positron pair production by the superposition of two laser pulses with different frequencies and amplitudes is analyzed as a particular realization of the assisted dynamic Schwinger effect. It is demonstrated that, within a non-perturbative kinetic equation framework, an amplification effect is conceivable for certain parameters. When both pulses have wavelengths longer than the Compton wavelength, the residual net density of produced pairs is determined by the resultant field strength. The number of pairs starts to grow rapidly if the wavelength of the high-frequency laser component gets close to the Compton wavelength.
The features of vacuum particle creation in an external classical field are studied for simplest external field models in 3 + 1 dimensional QED. The investigation is based on a kinetic equation that is a nonperturbative consequence of the fundamental equations of motion of QED. The observed features of the evolution of the system apply on the qualitative level also for systems of other nature and therefore are rather general. Examples from cosmology and condensed matter physics illustrate this statement. The common basis for the description of these systems are kinetic equations for vacuum particle creation belonging to the class of integro-differential equations of non-Markovian type with fastly oscillating kernel. This allows to characterize processes of this type as belonging to the class of field induced phase transitions.
We study the dynamical Schwinger effect in the vacuum excitation of the electron-positron plasma under action of a "laser pulse" of the simplest configuration: a linearly polarized, time-dependent and spatially homogeneous electric field. Methodical basis of this investigation is the kinetic equation which is an exact consequence of the basic equations of motion of QED in the considered field model. In the present work we investigate some features of the residual electron-positron plasma and the transient process of its formation.
The kinetic-equation approach to particle production in strong, time-dependent external fields is revisited and three limiting cases are discussed for different field patterns: the Sauter pulse, a harmonic pulse with a Gaussian envelope, and a Poisson-distributed stochastic field. It is shown that for transient subcritical electric fields E ( t ) a finite residual particle number density n ( ∞ ) would be absent if the field-dependence of the dynamical phase in the Schwinger source term would be neglected. In this case the distribution function of created particles follows the law f ( t ) ∼ E 2 ( t ) . Two lessons for particle production in heavy-ion collisions are derived from this exercise. First: the shorter the (Sauter-type) pulse, the higher the residual density of produced particles. Second: although the Schwinger process in a string-type field produces a non-thermal particle spectrum, a Poissonian distribution of the (fluctuating) strings produces a thermal spectrum with an apparent temperature that coincides with the Hawking–Unruh temperature for the mean value of the string tension.
We develop a kinetic equation approach to nonequilibrium pion and sigma meson production in a time-dependent, chiral symmetry breaking field (inertial mechanism). We investigate the question to what extent the low-momentum pion enhancement observed in heavyion collisions at CERN -LHC can be addressed within this formalism. In a first step, we consider the inertial mechanism for nonequilibrium production of σ−mesons and their simultaneous decay into pion pairs for two cases of σ mass evolution. The resulting pion distribution shows a strong low-momentum enhancement which can be approximated by a thermal Bose distribution with a chemical potential that appears as a trace of the nonequilibrium process of its production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.