Systems of floor insulation on the ground, isolation of roads and shallow foundations suggest the use of heat-insulating products resistant to moisture, the minerals contained in it, having low heat conductivity and water absorption and relatively high strength for compressive loads.The aim of the research was to study the possibility of using mineral substances containing crystalline water as a dispersed component. Firstly, such compounds as a reinforcing component increase the strength characteristics of products. Secondly, being flame retardants, they contribute to increasing the fire safety of materials and building systems in which these materials are used. To achieve this goal, two particular tasks were set: determination of the optimal consumption of mineral modifying additives; assessment of exploitative stability of the received products. It was found that the introduction of a mineral modifying additive can significantly increase the compressive strength by 10% deformation of samples from extruded polystyrene foam. The exploitative stability of products with a mineral additive varies slightly and depends on its consumption and uniform distribution in the product matrix. The effect of additive consumption on the change in the thermal conductivity of products has not been established. A nomogram has been built which allows one to evaluate the properties of products and determine the optimal consumption of a modifying additive.Systems of using products from modified extruded polystyrene foam in monolithic foundations with insulation for buildings erected on problem soils are considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.