A fiber optic biosensor was used to detect the fraction 1 (F1) antigen from Yersinia pestis, the etiologic agent of plague. The instrument employs an argon ion laser (514 nm) to launch light into a long-clad fiber and measures the fluorescence produced by an immunofluorescent complex formed in the evanescent wave region. This sensing area is a short section (12.5 cm) at the end of the optical fiber from which the cladding has been removed and in which the silica core has been tapered. Capture antibodies, which bind to F1 antigen, were immobilized on the core surface to form the basis of the sandwich fluoroimmunoassay. The ability to detect bound F1 antigen was provided by adding tetramethylrhodamine-labeled anti-plague antibody to form fluorescent complexes. The evanescent wave has a limited penetration depth (<1), which restricts detection of the fluorescent complexes bound to the fiber's surface. The direct correlation between the F1 antigen concentration and the signal provided an effective method for sample quantitation. This method achieved a high level of accuracy for determining F1 antigen concentrations from 50 to 400 ng/ml in phosphate-buffered saline, serum, plasma, and whole blood, with a 5-ng/ml limit of detection. Subsequent blind studies, which included serum samples from patients, yielded results in good agreement with measurements by enzyme-linked immunosorbent assay. A major advantage of the fiber optic biosensor is that results can be generated within minutes while isolating the user from hazardous samples. These factors favor development of this biosensor into a facile and rapid diagnostic device.
The fiber-optic biosensor, originally developed to detect hazardous biological agents such as protein toxins or bacterial cells, has been utilized to quantify the concentration of serum antiplague antibodies. This biosensor has been used to detect and quantify the plague fraction 1 antigen in serum, plasma, and whole-blood samples, but its ability to quantify serum antibodies has not been demonstrated. By using a competitive assay, the concentration of serum antiplague antibodies was ascertained in the range of 2 to 15 μg/ml. By making simple dilutions, concentrations for 11 serum samples whose antiplague antibody concentrations were unknown were determined and were found to be in good agreement with enzyme-linked immunosorbent assay results. The competitive assay method could be used to effectively determine the exposure to plague of animals or humans or could be applied to other diseases, such as hepatitis or AIDS, where the presence of antibodies is used to diagnose infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.