Based on a comprehensive cost analysis for the expansion of the Finnentrop WWTP, integration of lamella separators in the biological treatment stage was given priority as optimal solution to increase the solids concentration. The overall expansion project included the reconstruction of the former primary clarifier into a primary settling tank with short retention times and the use of the remaining volume for pre-denitrification. Four lamella separators were positioned in the existing carousel-type activated sludge tank. With the lamella assemblies ensuring it was possible to continue operation of the existing secondary settling tanks. To control an adequate solids concentration in the activated sludge tank and to avoid any overloading of the secondary settling tank, a newly developed bypass strategy was applied. With a controlled mixing of direct effluent from the lamella separators and the contents of the activated sludge tank, the solids concentration of the influent to the secondary settling tank could be maintained at a value of 2.2 kg/m(3). The lamella separator concept did not account for any significant changes in the sludge characteristics, and the overall elimination of nutrients and organic carbon was found to be excellent upon optimisation of the operational lamella strategy.
On the basis of a cost-benefit analysis it was decided to expand the Arnsberg WWTP by a multistage biological process which allows for cost-effective integration of the existing facilities. Carbon removal will then be accomplished in a high-loaded activated sludge stage for which the existing primary clarifier is to be reconstructed. The existing trickling filters will be used for nitrification during a midterm period and will be replaced later on either by a moving bed system or by new trickling filters. Line 3 of the existing secondary clarifiers will be reconstructed and used for post denitrification in a moving bed system. The carbon needed for denitrification will be provided by means of sludge hydrolysis and the use of an external carbon source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.