Ten horses of Thoroughbred or Standardbred breeding were used to study the effects of dietary fish oil supplementation on the metabolic response to a high-intensity incremental exercise test. Horses were assigned to either a fish oil (n = 6) or corn oil (n = 4) treatment. The fish oil (Omega Protein, Hammond, LA) contained 10.6% eicosapentaenoic acid and 8% docosahexaenoic acid. Each horse received timothy hay and a textured concentrate at a rate necessary to meet its energy needs. The supplemental oil was top-dressed on the concentrate daily at a rate of 324 mg/kg BW. Horses received their assigned diet for 63 d, during which time they were exercised 5 d/wk in a round pen or on a treadmill. During wk 1, horses exercised for 10 min at a trot. After wk 1, exercise time and intensity were increased so that at wk 5, exercise time in the round pen increased to 30 min (10 min of cantering and 20 min of trotting) per day. Starting at wk 6, horses were exercised 3 d/wk in the round pen for 30 min and 2 d/wk on a treadmill for 20 min. After 63 d, all horses performed an exercise test consisting of a 5-min warm-up at 1.9 m/s, 0% grade, followed by a step test on a 10% grade at incremental speeds of 2 to 8 m/s. Blood samples were taken throughout exercise. During exercise, horses receiving fish oil had a lower heart rate (treatment x time interaction; P < 0.05) and tended to have lower packed cell volume (treatment effect; P = 0.087). Plasma lactate concentrations were not affected by treatment. Plasma glucose concentrations were not different between groups during exercise but were lower (treatment x time interaction; P < 0.01) for the fish oil group during recovery. Serum insulin tended to be lower in fish oil horses throughout exercise (treatment effect; P = 0.064). There was a tendency for glucose:insulin ratios to be higher for fish oil-treated horses throughout exercise (treatment effect; P = 0.065). Plasma FFA were lower (treatment x time interaction; P < 0.01) in horses receiving fish oil than in horses receiving corn oil during the initial stages of the exercise test. Serum glycerol concentrations also were lower in fish oil-treated horses (P < 0.05). Serum cholesterol concentrations were lower in horses receiving fish oil (treatment effect; P < 0.05), but serum triglycerides were not affected by treatment (P = 0.55). These data suggest that addition of fish oil to the diet alters exercise metabolism in conditioned horses.
Skeletal muscle function, aerobic capacity, and mitochondrial (Mt) function have been found to decline with age in humans and rodents. However, not much is known about age-related changes in Mt function in equine skeletal muscle. Here, we compared fiber-type composition and Mt function in gluteus medius and triceps brachii muscle between young (age 1.8 ± 0.1 yr, n = 24) and aged (age 17-25 yr, n = 10) American Quarter Horses. The percentage of myosin heavy chain (MHC) IIX was lower in aged compared with young muscles (gluteus, P = 0.092; triceps, P = 0.012), while the percentages of MHC I (gluteus; P < 0.001) and MHC IIA (triceps; P = 0.023) were increased. Mass-specific Mt density, indicated by citrate synthase activity, was unaffected by age in gluteus, but decreased in aged triceps (P = 0.023). Cytochrome-c oxidase (COX) activity per milligram tissue and per Mt unit decreased with age in gluteus (P < 0.001 for both) and triceps (P < 0.001 and P = 0.003, respectively). Activity of 3-hydroxyacyl-CoA dehydrogenase per milligram tissue was unaffected by age, but increased per Mt unit in aged gluteus and triceps (P = 0.023 and P < 0.001, respectively). Mt respiration of permeabilized muscle fibers per milligram tissue was unaffected by age in both muscles. Main effects of age appeared when respiration was normalized to Mt content, with increases in LEAK, oxidative phosphorylation capacity, and electron transport system capacity (P = 0.038, P = 0.045, and P = 0.007, respectively), independent of muscle. In conclusion, equine skeletal muscle aging was accompanied by a shift in fiber-type composition, decrease in Mt density and COX activity, but preserved Mt respiratory function.
To determine the effect of different sources of dietary n-3 fatty acids (FA) on plasma and red blood cell (RBC) FA composition and immune response, 18 Quarter Horse yearlings were randomly and equally assigned to 1 of 3 treatments: encapsulated fish oil (n = 6), milled flaxseed (n = 6), or no supplementation (control, n = 6). Fish oil contained 15 g of eicosapentaenoic acid (C20:5n-3) and 12.5 g of docosahexaenoic acid (C22:6n-3), and flaxseed contained 61 g of alpha-linolenic acid (C18:3n-3) per 100 g of FA. Horses had free access to bahiagrass pasture during the active growing season and were individually fed a grain mix concentrate at 1.5% BW/d. Fish oil and flaxseed were mixed into the concentrate in amounts to provide 6 g of total n-3/100 kg of BW. Horses were fed their respective treatments for 70 d. Blood samples were obtained to determine plasma and RBC FA composition and for isolation of peripheral blood mononuclear cells. Peripheral blood mononuclear cells were stimulated with concanavalin A and phytohemagglutinin (PHA) to determine lymphocyte proliferation and were challenged with lipopolysaccharide to determine PGE(2) production. In vivo inflammatory response was assessed on d 70 by measuring skin thickness and area of swelling in response to intradermal injection of PHA. Treatment did not affect BW gain, which averaged 0.6 +/- 0.03 kg/d. Horses fed fish oil had greater (P < 0.05) proportions of eicosapentaenoic acid, docosahexaenoic acid, and sum of n-3 in plasma and RBC compared with those in the flaxseed and control treatments. In addition, plasma arachidonic acid was greater (P < 0.05) and plasma linoleic and alpha-linolenic acids were less (P < 0.05) in the fish oil treatment compared with the flaxseed and control treatments. Dietary treatment did not affect lymphocyte proliferation or PGE(2) production. Across treatments, the peak increase in skin thickness was observed 4 to 8 h after PHA injection. At 4 h postinjection, horses fed fish oil and those fed flaxseed had a greater increase in skin thickness than those in the control treatment (P < 0.05) and horses fed fish oil had a larger area of swelling than those in the control treatment (P < 0.05). Skin thickness remained greater (P < 0.05) in horses fed flaxseed than in control horses 6 h after injection. Although fed to supply a similar amount of n-3 FA, fish oil had a greater impact on plasma and RBC n-3 FA content than did flaxseed. However, supplementing horses with both fish oil and flaxseed resulted in a more pronounced early inflammatory response to PHA injection as compared with nonsupplemented horses.
We tested the hypothesis that, similar to humans and rodents, exercise training would enhance mitochondrial (Mt) biogenesis and function in skeletal muscle of young horses. Twenty-four Quarter Horse yearlings were randomly assigned to either submaximal exercise training or no forced exercise (untrained). Biopsies were collected from the gluteus medius and triceps brachii before and after 9 wk of treatment. Citrate synthase activity was lower (P < 0.0001) and cytochrome c oxidase activity per Mt unit was higher (P < 0.0001) in gluteus compared to triceps, but neither changed over the trial period. From wk 0 to 9, intrinsic Mt respiration (PCI, PCI+II; P = 0.008) and electron transport capacity (ECI+II; P = 0.01) increased, and LEAK-related flux control factor (FCFL; P = 0.02) decreased in both muscles. After 9 wk of training, gluteus muscle exhibited higher (P < 0.05) intrinsic PCI, PCI+II, ECI+II, and FCFCI and FCFCI+II, and lower FCFL (P = 0.0002). Mitochondrial content did not change from wk 0 to 9, and also not in response to submaximal exercise training. Improvements in Mt function were most directly related to ongoing growth of horses independent of muscle group, and training further enhanced Mt function in the gluteus medius.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.