The skin of a fast swimming shark reveals riblet structures that help reduce the shark's skin friction drag, enhancing its efficiency and speed while moving in the water. Inspired by the structure of the shark skin denticles, our team has carried out a study as an effort in improving the hydrodynamic design of marine vessels through hull design modification which was inspired by this riblet structure of shark skin denticle. Our study covers on macroscaled design modification. This is an attempt to propose an alternative for a better economical and practical modification to obtain a more optimum cruising characteristics for marine vessels. The models used for this study are constructed using computer-aided design (CAD) software, and computational fluid dynamic (CFD) simulations are then carried out to predict the effectiveness of the hydrodynamic effects of the biomimetic shark skins on those models. Interestingly, the numerical calculated results obtained show that the presence of biomimetic shark skin implemented on the vessels give about 3.75% reduction of drag coefficient as well as reducing up to 3.89% in drag force experienced by the vessels. Theoretically, as force drag can be reduced, it can lead to a more efficient vessel with a better cruising speed. This will give better impact to shipping or marine industries around the world. However, it can be suggested that an experimental procedure is best to be conducted to verify the numerical result that has been obtained for further improvement on this research.
Abstract. Wind turbine generates renewable energy when the forces acted on the turbine blades cause the rotation of the generator to produce clean electricity. This paper proposed a novel lantern wind turbine design compared to a conventional design model. Comparison is done based on simulation on coarse and fine meshing with all the results converged. Results showed that the pressure difference on the surface of novel design lantern wind turbine is much higher compared to the conventional wind turbine. Prototype is already manufactured and experimental result would be discussed in a separate future publication
Abstract. This paper presents micro-needle with different tip and inner structure of the needle for optimizations of pain stresses and drug or blood deliveries. The micro-needle comes with several design's parameters of length ranging from 5mm to 50mm and diameter ranging from 100µm to 200µm. A hollow micro-needle with four different tip designs which are 10°, D3-2, D6 and Quadruple are also designed to optimize the pain stresses parameters. In order to improve the flow deliveries, the inner structure of the channel is modified into various polygonal shape which is square, hexagon and dodecagon. It shows that, having less contact surface area between the skin and micro-needle's tip and polygonal shape of inner channel has better performance for both of the objectives. These feasible region of average velocity and stress of the micro-needle have satisfied in determining the best design for tip and inner channel of the micro-needle under certain conditions and constraints. The three-dimensional geometry study had improved the insertions performance and efficiencies in painless drug or blood deliveries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.