The total fat content, the fatty acid composition of oil (11 fatty acids), and the total carotenoid content in grain of 8 millet varieties harvested in 2020–2021 have been investigated. The mean value of the total fat content in millet grain was 4.4±0.12%, and the varieties did not differ significantly in this parameter. The total carotenoid content averaged 6.7±0.94 mg/kg. The oil from modern millet varieties was notable for high contents of linoleic (62.4±1.32%) and oleic acids (25.1±1.67%), indicating their high nutritional value. The fatty acids in the millet grain were ranked in order of descending contents as follows: С18:2 > С18:1 > С16:0 > С18:0 > С18:2 > С24:0 > С20:0 > С16:1 > С22:0 > С20:1 > С14:1. A high content of linoleic acid in grain was recorded in the varieties Omriyane (63.6±0.07%), Sozh (62.7±0.34%), Yulin 1 (62.4±0.03%), Bila Altanka (62.8±0.04%), Kharkivske 57 (63.2±0.45%), and Zhodynske (63.3±0.31%). The varieties Sozh and Yulin 1 had an above-average content of oleic acid (26.1±0.19% and 26.0±0.01% respectively). The highest oleic acid content was observed in the variety Bohatyrske (28.5±0.15%). These data prove that high levels of linoleic and oleic acids can be combined in one genotype. The carotenoid content in the varieties Slobozhanske, Omriyane, Bila Altanka, and Yulin 1 was significantly higher than the mean value (by 0.6, 0.7, 1.1, and 0.5 mg/kg respectively). Correlation analysis has allowed determining genetic relationships between the total oils, carotenoids, and fatty acids of grain, and has shown weak to very weak correlations between their total contents. However, the oleic acid content was moderately and negatively correlated with the carotenoid content (r=-0.550) as well as with linoleic (r=-0.717), stearic (r=-0.574), eicosanoic (r=-0.590), and lignoceric (r=-0.533) acid contents. This means that breeding of high-quality millet cultivars is complicated. During long-term storage (5 years) of Kharkivske 57 grain, the total oil content decreased by 0.25%, but this change was not statistically significant. After the five-year storage, the carotenoid content decreased by 4.74 mg/kg. The acid value of oil in 2020 was 5.10 mg KOH/100 g of substance. After the five-year storage, it increased to 9.53 mg KOH/100 g of substance. No significant changes were observed in the quantity or quality of fatty acids in Kharkivske 57 oil. Nevertheless, the storage of millet grain was accompanied by a slight increase in palmitic, stearic, linoleic, linolenic, eicosanoic, eicosenoic, behenic, and lignoceric acids.
Genotype-environment (G × E) interactions for non-polar lipids and fatty acids were studied in 28 chickpea accessions. The total nonpolar lipid content was determined by Soxhlet procedure; fatty acid profiles were investigated by gas chromatography. There were strong negative correlations between oleic and linoleic acids and between oleic and linolenic acids. The correlation between linoleic and linolenic acids was positive and either strong or moderate. Correlations between the other acids were differently directed and of various strengths. Line Luh 99/11 turned out to be an outlier in relation to the other genotypes due to an unusually high content of stearic acid. Cultivar CDC Jade was an outlier because of too low content of stearic acid and too high content of linoleic acid. Accession UD0502195 was an outlier due to a higher content of palmitic acid. Accessions UD0500022 and UD0502195 were outliers due to the low content of total nonpolar lipids. The variability in the total nonpolar lipid content was not affected by the environment, but the environment contributions to the variability of oleic and linoleic acids were very high. There were only statistically significant differences in the oleic and linoleic acid amounts between the cultivation years. There was a positive correlation between the oleic acid content and the average air temperature during the “anthesis – maturity” period and a negative correlation between the linoleic acid content and the average temperature during this period. There was also a negative correlation between the oleic acid content and precipitation during the “anthesis – maturity” period and a positive correlation between the linoleic acid content and precipitation during this period. The palmitic acid content was the most responsive to environmental changes in cultivar CDC Vanguard and the most resistant in cultivar Krasnokutskiy 123. The stearic acid content was the most sensitive to environmental changes in cultivar ILC 3279 and the most irresponsive in accession UKR001:0502116. As to oleic and linoleic acids, line L 273-18 had the bi (plasticity) and S2di (stability) values coupled with the corresponding mean contents, meaning that this genotype may be adapted to decreased temperature. The ecovalence values (Wi2) for the total nonpolar lipids, palmitic, stearic and linolenic acids indicated that these characteristics were little responsive to environmental fluctuations. As to oleic and linoleic acids, Wi2 values were much higher in many accessions, confirming the variability of these parameters depending on growing conditions. Having the highest Wi2 values, accession Garbanzo 2 is expected to show high degrees of the G × E interactions for oleic and linoleic acids. S2di was positively correlated with Wi2.
Мета – дослідити вплив густоти рослин та обробітку біологічними препаратами на формування фотосинтетичних показників гібридів кукурудзи у Південному Степу України. Методи. Дослідження проводилися протягом 2019–2021 рр. на дослідному полі Інституту зрошуваного землеробства НААН, що розташоване в зоні Інгулецького зрошуваного масиву. Фактор А – різні за групами ФАО вітчизняні гібриди кукурудзи. Фактор В – густота рослин. Фактор С – обробка інноваційними вітчизняними біопрепаратами. Результати. Встановлено, що обробіток біопрепаратами забезпечив прибавку площу асиміляційної поверхні гібридів кукурудзи. Гібриди кукурудзи (в середньому) максимальну площу асиміляційної поверхні показали за обробки препаратом Біоспектр БТ – 0,665 м2 / рослину. Найбільший вплив на площу асиміляційної поверхні спричиняв препарат Біоспектр БТ, який забезпечував приріст, порівняно з необробленим контролем, на 0,028–0,067 м2 / рослину. Препарат Трихопсин БТ в середньому за дослідом також позитивно впливав на площу асиміляційної поверхні (приріст 0,015–0,055 м2 / рослину). Біологічний препарат Флуоресцин БТ в середньому за дослідом мінімально впливав на площу асиміляційної поверхні (приріст 0,009–0,044 м2 / рослину). Площа асиміляційної поверхні збільшилась за рахунок зменшення пошкоджень грибними захворюваннями та шкідниками, а також під впливом рістстимулювальної дії препаратів. Висновки. Максимальну величину фотосинтетичного потенціалу – 3100 тис. м2*діб – було одержано у середньопізнього гібриду Арабат за густоти 90 тис. рослин / га та обробки біопрепаратом Біоспектр БТ. У середньопізнього гібриду Чонгар максимальний показник фотосинтетичного потенціалу спостерігали за густоти 90 тис. рослин / га та обробки біопрепаратом Біоспектр БТ – 2924 тис. м2*діб. Середньостиглий гібрид Каховський максимальний показник фотосинтетичного потенціалу – 2498 тис. м2*діб – показав за густоти 90 тис. рослин / га та обробки біопрепаратом Біоспектр БТ. Ранньостиглий гібрид Степовий максимальну величину фотосинтетичного потенціалу показав за густоти 90 тис. рослин / га та обробки біопрепаратом Біоспектр БТ – 2090 тис. м2*діб.
Recently, the problem of phytosanitary condition of sunflower crops has been exacerbated, which is associated with violation of crop rotations and, as a consequence, spread of common diseases. Selection for resistance to biotic factors requires comprehensive research into the crop biology and pathogens. The use of starting material, which is resistant to major pathogens and environmental stressors, in selection is a prerequisite for the breeding of highly productive hybrids. Significant progress in the breeding of heterosis sunflower hybrids has been achieved primarily due to stable inbred lines. However, their creation is time-consuming, taking 8-12 years. Selection of desirable genotypes and initial forms for crossing is complicated by the fact that it is driven by a set of polygenic traits that are prone to significant modification variability. The use of molecular genetic markers is a way to accelerate breeding. Marker-assisted selection breeding (MAS) has been theoretically justified in numerous publications and implemented in most breeding institutions around the world. However, in domestic breeding programs, MAS has not become widespread compared to traditional methods. Nevertheless, this breeding trend opens new opportunities for studying genetic diversity and determining kinship at the intraspecies and genus levels. The review provides information on the status and prospects of implementation of MAS in traditional plant breeding and highlights the achievements of modern biotechnology in sunflower breeding for resistance to biotic factors owing to molecular genetic markers. The MAS principles are outlined and the advantages of this method are described. Specific examples of application of the molecular approach during the development of starting material of sunflower for breeding for resistance to common diseases and parasites are given. The main stages and components of PCR analysis are also described. Inbred sunflower lines – carriers of the gene for resistance to the downy mildew pathogen are characterized and genetic passports using STS markers to the Pl6 locus have been formalized for 13 sunflower lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.