In GaAs, (Si,H) complexes are efficiently dissociated at 300 K by photons with energies above 3.5 eV. Their optical cross-section is 10-19-10-18 cm2. This dissociation is the result of an electronic excitation of the Si-H bond of the complex from a bonding state to an antibonding state. (Si,H) and (S,H) complexes in AlGaAs alloys are also dissociated under UV illumination with optical cross-sections similar to GaAs. In passivated 2D AlGaAs-GaAs heterostructures, the evolution of the extra sheet carrier concentration at low photon densities presents a loss of free carriers attributed to the filling of surface states. In AlGaAs and in 2D AlGaAs-GaAs heterostructures, the replacement of hydrogen by deuterium in the complexes shows that the (Si,D) and (S,D) complexes are significantly more stable than the (Si,H) and (S,H) complexes as previously found in GaAs:Si,H.
Hydrogen incorporation in n-type Si-doped GaAs epilayers is a well-known process which leads to the neutralization of the active Si impurities with the formation of SiH complexes. Recently, we have shown that SiH complex dissociation and, consequently, Si-dopant reactivation could occur when the epilayers are exposed to an electron beam. Two epilayers have been studied: the first is a 0.35 µm thick hydrogenated Si-doped GaAs epilayer and the second is Si planar-doped AlGaAs/GaAs/InGaAs heterostructures. Firstly, Hall effect measurements have been carried out on the epilayers exposed, after RF hydrogen plasma exposition, to increasing electron doses with different injection energies. For the 2D heterostructures, we have observed that the free carrier density Ns does not vary significantly for weak electron densities. This reactivation presents a threshold value, contrary to the 0.35 µm epilayer in which Ns varies quite linearly. It will be shown that such phenomena might be attributed to the filling of surface states as the dopants are progressively reactivated. Then, using a high spatial resolution electron beam lithography system, nanometric conductive patterns have been fabricated starting from hydrogenated epilayers. Electric measurements have been performed and the results obtained show that about 15 nm spatial resolution could be expected. In conclusion, taking into account this spatial resolution, the high spatial contrast of conductivity which could be expected due to the existence of an electron dose threshold, and the high mobility of the AlGaAs/GaAs/InGaAs heterostructure, the effects described in this paper could open a new way for the fabrication of III–V 1D or 2D mesoscopic structures for electronic or optoelectronic applications.
Hydrogen incorporation in n-type Si-doped GaAs epilayers is now a well-known process. This paper is devoted to the study of the stability of SiH (SiD) complexes when submitted to an electron beam in n-type Si-doped GaAs epilayer and also in 2D-AlGaAs heterostructures exposed to a hydrogen or deuterium plasma.The results obtained by Hall effect measurements on hydrogenated and deuterated GaAs epilayers with different thicknesses (0.2 and 0.35νm) and Si planar-doped AlGaAs/GaAs/InGaAs heterostructures exposed to an electron beam with different injection energies (10 to 50 keV) are presented. On one hand, the reactivation of Si dopants strongly decreases when deuterium is used. On the other hand, the study of this reactivation versus injection energies of electrons suggests an energetic electron excitation effect rather than a minority carrier generation effect. In addition, for the 0.2νm thick GaAs epilayer and the 2D heterostructures, the free carrier density does not vary significantly for low electron densities, and as a consequence, the reactivation of the Si dopants occurs above an electron dose threshold. This phenomenon might be attributed to the filling of surface states as the dopants are progressively reactivated.As a result, due to the electron dose threshold as well as their high electron mobility properties, Si planar-doped AlGaAs/GaAs/InGaAs heterostructures are particularly interesting to reactivate dopants, with a good spatial contrast, using an electron beam irradiation and the effects described in this paper could open the fabrication of high mobility 1D or 2D mesoscopic structures for electronic or optoelectronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.