We present regional sea-level projections and associated uncertainty estimates for the end of the 21 st century. We show regional projections of sea-level change resulting from changing ocean circulation, increased heat uptake and atmospheric pressure in CMIP5 climate models. These are combined with model- and observation-based regional contributions of land ice, groundwater depletion and glacial isostatic adjustment, including gravitational effects due to mass redistribution. A moderate and a warmer climate change scenario are considered, yielding a global mean sea-level rise of 0.54 ±0.19 m and 0.71 ±0.28 m respectively (mean ±1σ). Regionally however, changes reach up to 30 % higher in coastal regions along the North Atlantic Ocean and along the Antarctic Circumpolar Current, and up to 20 % higher in the subtropical and equatorial regions, confirming patterns found in previous studies. Only 50 % of the global mean value is projected for the subpolar North Atlantic Ocean, the Arctic Ocean and off the western Antarctic coast. Uncertainty estimates for each component demonstrate that the land ice contribution dominates the total uncertainty
Sea-level change is often considered to be globally uniform in sea-level projections. However, local relative sea-level (RSL) change can deviate substantially from the global mean. Here, we present maps of twenty-first century local RSL change estimates based on an ensemble of coupled climate model simulations for three emission scenarios. In the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), the same model simulations were used for their projections of global mean sea-level rise. The contribution of the small glaciers and ice caps to local RSL change is calculated with a glacier model, based on a volume-area approach. The contributions of the Greenland and Antarctic ice sheets are obtained from IPCC AR4 estimates. The RSL distribution resulting from the land ice mass changes is then calculated by solving the sea-level equation for a rotating, elastic Earth model. Next, we add the pattern of steric RSL changes obtained from the coupled climate models and a model estimate for the effect of Glacial Isostatic Adjustment. The resulting ensemble mean RSL pattern reveals that many regions will experience RSL changes that differ substantially from the global mean. For the A1B ensemble, local RSL change values range from -3.91 to 0.79 m, with a global mean of 0.47 m. Although the RSL amplitude differs, the spatial patterns are similar for all three emission scenarios. The spread in the projections is dominated by the distribution of the steric contribution, at least for the processes included in this study. Extreme ice loss scenarios may alter this picture. For individual sites, we find a standard deviation for the combined contributions of approximately 10 cm, regardless of emission scenario.
Sea level rise, especially combined with possible changes in storm surges and increased river discharge resulting from climate change, poses a major threat in low-lying river deltas. In this study we focus on a specific example of such a delta: the Netherlands. To evaluate whether the country's flood protection strategy is capable of coping with future climate conditions, an assessment of low-probability/highimpact scenarios is conducted, focusing mainly on sea level rise. We develop a plausible high-end scenario of 0.55 to 1.15 m global mean sea level rise, and 0.40 to 1.05 m rise on the coast of the Netherlands by 2100 (excluding land subsidence), and more than three times these local values by 2200. Together with projections for changes in storm surge height and peak river discharge, these scenarios depict a complex, enhanced flood risk for the Dutch delta.
The study of glacial isostatic adjustment (GIA) is gaining an increasingly important role within the geophysical community. Understanding the response of the Earth to loading is crucial in various contexts, ranging from the interpretation of modern satellite geodetic measurements (e.g. GRACE and GOCE) to the projections of future sea level trends in response to climate change. Modern modelling approaches to GIA are based on various techniques that range from purely analytical formulations to fully numerical methods. Despite various teams independently investigating GIA, we do not have a suitably large set of agreed numerical results through which the methods may be validated; a community benchmark data set would clearly be valuable. Following the example of the mantle convection community, here we present, for the first time, the results of a benchmark study of codes designed to model GIA. This has taken place within a collaboration facilitated through European Cooperation in Science and Technology (COST) Action ES0701. The approaches benchmarked are based on significantly different codes and different techniques. The test computations are based on models with spherical symmetry and Maxwell rheology and include inputs from different methods and solution techniques: viscoelastic normal modes, spectral-finite elements and finite elements. The tests involve the loading and tidal Love numbers and their relaxation spectra, the deformation and gravity variations driven by surface loads characterized by simple geometry and time history and the rotational fluctuations in response to glacial unloading. In spite of the significant differences in the numerical methods employed, the test computations show a satisfactory agreement between the results provided by the participants
S U M M A R YMultilayer, spherically stratified, self-gravitating relaxation models with a'large number of layers (more than 100) can be dealt with analytically. Relaxatio processes are process of a realistic earth model with an incompressible Maxwell r'heology show that models containing about 30 to 40 layers have reached continuum limits on all timescales and for all harmonic degrees up to at least 150 whenever an elastic lithosphere is present, irrespective of the viscosity profile in the mantle. In particular, fine-graded stratification of the shallow layers proves to be important for high harmonic degrees in these models. The models produce correct long-time (fluid) limits. It is shown that differences in the transient behaviour of the various models are due to the applied volume-averaging procedure of the rheological parameters. Our earlier proposed hypothesis that purported shortcomings in the fundamental physics of (discrete) normalmode theory are artificial consequences of numerical inaccuracies, theoretical misinterpretations and the use of incomplete sets of normal modes is reinforced by the results presented. We show explicitly that the models produce both continuous behaviour resulting from continuous rheological stratifications and discrete behaviour resulting from sharp density contrasts, as at the outer surface and the core-mantle boundary. The differences between volume-averaged models and fixed-boundary contrast models are outlined. Reducing many-layer models with a volume-averaging procedure before employing a normal mode analysis is both economical and highly accurate on all timescales and for all spherical harmonic degrees. The procedure minimizes the chances of missing contributing modes, while using models with more layers will not result in any substantial increase of accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.