Figs (Ficus, Moraceae) and their associated fig waSPS (Hymenoptera, Chalcidoidea and Agaonidae) have attracted much attention and have been used as a model system for many studies. Fig waSPS belonging to the genus Philotrypesis are very common in most figs but their taxonomy, ecology and biology are currently poorly explored. A previous study on African Philotrypesis showed that their host association is phylogenetically conserved at subsection level. We reconstructed a molecular phylogeny with extended sampling from seven sections of figs. Our study suggested that the diversification of Philotrypesis is less constrained by host figs. Host switching is rampant between figs at species level and even at section level. We also investigated the evolution of the body colour forms in female Philotrypesis. Our study first suggested that female body colour is not evolutionarily stable and that there have been multiple transitions. Possible mechanisms for multiple colour transitions are expected to be determined in the near future.
Abstract. Terrestrial mud volcanoes (MVs) represent the surface expression of conduits tapping fluid and gas reservoirs in the deep subsurface. Such plumbing channels provide a direct, effective means to extract deep microbial communities fueled by geologically produced gases and fluids. The drivers accounting for the diversity and composition of these MV microbial communities, which are distributed over a wide geographic range, remain elusive. This study characterized the variation in microbial communities in 15 terrestrial MVs across a distance of ∼ 10 000 km on the Eurasian continent to test the validity of distance control and physiochemical factors in explaining biogeographic patterns. Our analyses yielded diverse community compositions with a total of 28 928 amplicon sequence variances (ASVs) taxonomically assigned to 73 phyla. While no true cosmopolitan member was found, ∼ 85 % of ASVs were confined within a single MV. Community variance between MVs appeared to be higher and more stochastically controlled than within MVs, generating a slope of the distance–decay relationship exceeding those for marine seeps and MVs as well as seawater columns. For comparison, physiochemical parameters explained 12 % of community variance, with the chloride concentration being the most influential factor. Overall, the apparent lack of fluid exchange renders terrestrial MVs a patchy habitat, with microbiomes diverging stochastically with distance and consisting of dispersal-limited colonists that are highly adapted to the local environmental context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.