Poly(3,4-ethylenedioxythiophene) (PEDOT) films were electrochemically polymerised with several synthetic (dodecylbenzosulfonic acid (DBSA)) and biological (dextran sulphate (DS), chondroitin sulphate (CS), alginic acid (ALG) and ulvan (ULV)) dopant anions, and their physical, mechanical and electrochemical properties characterised. PEDOT films incorporating the biological dopants ALG and ULV produced films of the greatest surface roughness (46 ± 5.1 and 31 ± 1.9 nm, respectively), and demonstrated significantly lower shear modulus values relative to all other PEDOT films (2.1 ± 0.1 and 1.2 ± 0.2 MPa, respectively). Quartz crystal microgravimetry was used to study the adsorption of the important extracellular matrix protein fibronectin, revealing protein adsorption to be greatest on PEDOT doped with DS, followed by DBSA, ULV, CS and ALG. Electrical stimulation experiments applying a pulsed current using a biphasic waveform (250 Hz) were undertaken using PEDOT doped with either DBSA or ULV. Electrical stimulation had a significant influence on cell morphology and cell differentiation for PEDOT films with either dopant incorporated, with the degree of branching per cell increased by 10.5× on PEDOT-DBSA and 6.5× on PEDOT-ULV relative to unstimulated cells, and mean neurite length per cell increasing 2.6× and 2.2× on stimulated vs. unstimulated PEDOT-DBSA and PEDOT-ULV, respectively. We demonstrate the cytocompatibility of synthetic and biologically doped PEDOT biomaterials, including the new algal derived polysaccharide dopant ulvan, which, along with DBSA doped PEDOT, is shown to significantly enhance the differentiation of PC12 neuronal cells under electrical stimulation.
Benzodiazepines are a commonly prescribed class of drugs that have the potential for abuse. The Palm Beach County Sheriff’s Office received drug seizure submissions that included novel and/or non-routine benzodiazepines of increasing prevalence from 2017 to 2019. This prompted the development of a method of analysis for these compounds in biological specimens. The method tests for 16 novel and non-routine benzodiazepines and suvorexant in whole blood by liquid chromatography–tandem mass spectrometry (LC–MS-MS). The target analytes included bromazepam, clobazam, clonazolam, clotiazepam, diclazepam, estazolam, etizolam, flualprazolam, flubromazepam, flubromazolam, loprazolam, lormetazepam, phenazepam, prazepam, suvorexant, tetrazepam, and triazolam. The method uses 200 µL of sample, protein precipitation, and an instrument run-time of 8 min. The limit of detection was either 1 or 5 ng/mL and the limit of quantitation was either 5 or 25 ng/mL depending on the analyte. The method was validated for quantitative analysis for 15 out of the 17 analytes. Flubromazepam and prazepam were validated for qualitative identification only. A quadratic calibration model (r2 > 0.990) with 1/x weighting was used for all analytes for quantitative analysis. The calibration range was either 5-100 or 25–500 ng/mL depending on the analyte. The coefficient of variation of replicate analyses was within 14% and bias was within ± 14%. The method provides a sensitive, efficient, and robust procedure for the quantitation and/or qualitative identification of select novel and non-routine benzodiazepines and suvorexant using LC–MS-MS and a sample volume of 200 µL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.