ABSTRACT:Compared to the wide use of digital elevation model (DEM), digital surface model (DSM) receives less attention because that it is composed by not only terrain surface, but also vegetations and man-made objects which are usually regarded as useless information. Nevertheless, these objects are useful for the identification of obstacles around an aerodrome. The primary objective of the study was to determine the applicability of DSM in obstacle clearance surveying of aerodrome. According to the requirements of obst acle clearance surveying at QT airport, aerial and satellite imagery were used to generate DSM, by means of photogrammetry, which was spatially analyzed with the hypothetical 3D obstacle limitation surfaces (OLS) to identify the potential obstacles. Field surveying was then carried out to retrieve the accurate horizontal position and height of the obstacles. The results proved that the application of DSM could make considerable improvement in the efficiency of obstacle clearance surveying of aerodrome.
ABSTRACT:Urban greenery is a critical part of the modern city and the greenery coverage information is essential for land resource management, environmental monitoring and urban planning. It is a challenging work to extract the urban greenery information from remote sensing image as the trees and grassland are mixed with city built-ups. In this paper, we propose a new automatic pixel-based greenery extraction method using multispectral remote sensing images. The method includes three main steps. First, a small part of the images is manually interpreted to provide prior knowledge. Secondly, a five-layer neural network is trained and optimised with the manual extraction results, which are divided to serve as training samples, verification samples and testing samples. Lastly, the well-trained neural network will be applied to the unlabelled data to perform the greenery extraction. The GF-2 and GJ-1 high resolution multispectral remote sensing images were used to extract greenery coverage information in the built-up areas of city X. It shows a favourable performance in the 619 square kilometers areas. Also, when comparing with the traditional NDVI method, the proposed method gives a more accurate delineation of the greenery region. Due to the advantage of low computational load and high accuracy, it has a great potential for large area greenery auto extraction, which saves a lot of manpower and resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.