The differentiation of stem cells into multi-lineages is essential to aid the development of tissue engineered materials that replicate the functionality of their tissue of origin. For this study, Raman spectroscopy was used to monitor the formation of a bone-like apatite mineral during the differentiation of human mesenchymal stem cells (hMSCs) towards an osteogenic lineage. Raman spectroscopy observed dramatic changes in the region dominated by the stretching of phosphate groups (950-970 cm(-1)) during the period of 7-28 days. Changes were also seen at 1030 cm(-1) and 1070 cm(-1), which are associated with the P-O symmetric stretch of PO(4)(3-) and the C-O vibration in the plane stretch of CO(3)(2-). Multivariate factor analysis revealed the presence of various mineral species throughout the 28 day culture period. Bone mineral formation was observed first at day 14 and was identified as a crystalline, non-substituted apatite. During the later stages of culture, different mineral species were observed, namely an amorphous apatite and a carbonate, substituted apatite, all of which are known to be Raman markers for a bone-like material. Band area ratios revealed that both the carbonate-to-phosphate and mineral-to-matrix ratios increased with age. When taken together, these findings suggest that the osteogenic differentiation of hMSCs at early stages resembles endochondral ossification. Due to the various mineral species observed, namely a disordered amorphous apatite, a B-type carbonate-substituted apatite and a crystalline non-substituted hydroxyapatite, it is suggested that the bone-like mineral observed here can be compared to native bone. This work demonstrates the successful application of Raman spectroscopy combined with biological and multivariate analyses for monitoring the various mineral species, degree of mineralisation and the crystallinity of hMSCs as they differentiate into osteoblasts.
Raman spectroscopy is employed to determine the suitability of the U20S osteoblast-like cell line for use as a model for human primary osteoblasts, with emphasis on the ability of these cell types to replicate their tissue of origin. It was found that both cell types demonstrated early stage mineral deposition that followed significantly different growth patterns. Analysis of the growth pattern and spectral data from primary cells revealed increasing bone quality ratios and a high crystallinity, consistent with previous reports. Conversely the investigation of the U20S osteoblast-like cell line provided evidence of dense multilayered mineralised regions that corresponded more closely to native bone in terms of its crystallinity and bone quality ratios. This finding contradicts previous reports on U20S osteoblast-like cells which have consistently described them as non-osteoinductive when cultured in various conditions on a number of substrates. This work demonstrates the successful application of Raman spectroscopy combined with biological and multivariate analysis for the investigation of osteoblast-like U20S cells and human primary osteoblasts, specifically with focus on the osteoinductive ability of the osteoblast-like cell line and the comparative differences in relation to the primary osteoblasts.
There are many techniques that allow in vitro interactions among cells and their environment to be monitored, including molecular, biochemical and immunochemical techniques. Traditional techniques for the analysis of cells often require fixation or lysis from substrates; however, use of such destructive methods is not feasible where the expanded cell cultures are required to be used for clinical implantation. Several studies have previously highlighted the potential of Raman spectroscopy to provide useful information on key biochemical markers within cells. As such, we highlight the capability of Raman spectroscopy with different laser spot sizes for use as a non-invasive, rapid, and specific method to perform in situ analysis of primary bovine aortic endothelial cells (BAECs). Raman spectra were collected from both individual live cells cultured on fused silica substrates and on clusters of live cells placed on fused silica substrates, measured at 532 and 785 nm. The results obtained show notable spectral differences in DNA/RNA region indicative of the relative cytoplasm and nucleus contributions. Raman spectra of cell clusters show slight variations in the intensity of the phenylalanine peak (1004 cm(-1)) indicating variations in protein contribution. These spectra also highlight contributions from other cellular components such as, proteins, lipids, nucleic acids and carbohydrates, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.