SummaryAcyclic diazodicarbonyl compounds react at room temperature with cycloaliphatic thioketones, e.g. 2,2,4,4-tetramethyl-3-thioxocyclobutanе-1-one and adamantanethione, via a cascade process in which the key step is a 1,5-electrocyclization of the intermediate thiocarbonyl ylide leading to tetrasubstituted spirocyclic 1,3-oxathioles. The most reactive diazodicarbonyl compound was diazoacetylacetone. In the case of dimethyl diazomalonate competitive 1,3-electrocyclization yielded the corresponding thiirane at elevated temperature, which after spontaneous desulfurization produced a tetrasubstituted alkene. To explain the observed temperature dependence of the main reaction product type obtained from dimethyl diazomalonate and 2,2,4,4-tetramethyl-3-thioxocyclobutanе-1-one as well as to verify reversibility of the thiocarbonyl ylide and 1,3-oxathiole interconversion, the calculations of the energy profile for the transformation of 1,3-oxathiole to alkene were performed at the DFT PBE1PBE/6-31G(d) level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.