We develop the frame-like formulation of massive bosonic higher spins fields in the case of 3-dimensional (A)dS space with the arbitrary cosmological constant. The formulation is based on gauge-invariant description by involving the Stueckelberg auxiliary fields. The explicit form of the Lagrangians and the gauge transformation laws are found. The theory can be written in terms of gauge-invariant objects similar to the massless theories, thus allowing us to hope to use the same methods for investigation of interactions. In the massive spin 3 field example we are able to rewrite the Lagrangian using the new the socalled separated variables, so that the study of Lagrangian formulation reduces to finding the Lagrangian containing only half of the fields. The same construction takes places for arbitrary integer spin field as well. Further working in terms of separated variables, we build Lagrangian for arbitrary integer spin and write it in terms of gauge-invariant objects. Also, we demonstrate how to restore the full set of variables, thus receiving Lagrangian for the massive fields of arbitrary spin in the terms of initial fields.
We apply the BRST approach, developed for higher spin field theories, to Lagrangian construction for totally antisymmetric massive fermionic fields in AdS d space. As well as generic higher spin massive theories, the obtained Lagrangian theory is a reducible gauge model containing, besides the basic field, a number of auxiliary (Stückelberg) fields and the order of reducibility grows with the value of the rank of the antisymmetric field. However, unlike the generic higher spin theory, for the special case under consideration we show that one can get rid of all the auxiliary fields and the final Lagrangian for fermionic antisymmetric field is formulated only in terms of basic field.
We apply the BRST approach, previously developed for higher spin field theories, to gauge invariant Lagrangian construction for antisymmetric massive and massless bosonic fields in arbitrary d-dimensional curved space. The obtained theories are reducible gauge models both in massless and massive cases and the order of reducibility grows with the value of the rank of the antisymmetric field. In both the cases the Lagrangians contain the sets of auxiliary fields and possess more rich gauge symmetry in comparison with standard Lagrangian formulation for the antisymmetric fields. This serves additional demonstration of universality of the BRST approach for Lagrangian constructions in various field models. 1 Aspects of modern state of higher spin field theory are discussed in the reviews [2]. 2 Recently this approach was applied to Lagrangian formulation of interacting bosonic higher spin gauge fields [9].
В теории обыкновенных дифференциальных уравнений хорошо известно уравнение Клеро. Это уравнение представляет собой нелинейное дифференциальное уравнение, неразрешенное относительно производной. Нахождение общего решения уравнения Клеро подробно описано в литературе, и известно, что оно представляет собой семейство интегральных прямых. Однако наряду с общим решением для таких уравнений существует сингулярное (особое) решение, представляющее собой огибающую данного семейства интегральных прямых. Отметим, что сингулярное решение уравнения Клеро представляет определенный интерес в ряде прикладных задач. Помимо обыкновенного дифференциального уравнения Клеро известно дифференциальное уравнение первого порядка в частных производных типа Клеро. Данное уравнение представляет собой многомерное обобщение обыкновенного дифференциального уравнения Клеро на случай, когда искомая функция зависит от многих переменных. Задача нахождения общего решения для уравнений типа Клеро в частных производных решена. Известно, что полный интеграл уравнения представляет собой семейство интегральных (гипер)плоскостей. Помимо общего решения могут существовать частные решения, а в некоторых случаях удается найти сингулярное решение. Общего алгоритма нахождения сингулярного решения, вообще говоря, не существует, поскольку задача сводится к решению системы нелинейных алгебраических уравнений. В статье изучается проблема нахождения сингулярного решения дифференциального уравнения типа Клеро в частных производных для частного выбора функции от производных в правой части. Работа устроена следующим образом. Во введении дан краткий обзор некоторых современных результатов, относящихся к исследованию уравнений типа Клеро в теории поля и классической механике. В первой части даются общие сведения о дифференциальных уравнениях типа Клеро в частных производных и структуре его общего решения. В основной части работы обсуждается метод нахождения сингулярных решений многомерных дифференциальных уравнений типа Клеро. Основным результатом работы является нахождение сингулярных решений уравнений, содержащих степенную и показательную функции.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.