The synthesis and enzyme inhibition data for a series of thiadiazole urea matrix metalloproteinase (MMP) inhibitors are described. A broad screening effort was utilized to identify several thiadiazoles which were weak inhibitors of stromelysin. Optimization of the thiadiazole leads to include an alpha-amino acid side chain with variable terminal amide substituents provided a series of ureas which were moderately effective stromelysin inhibitors, with Ki's between 0.3 and 1.0 microM. The most effective analogues utilized an L-phenylalanine as the amino acid component. In particular, unsubstituted 46 had a Ki of 710 nM, while the p-fluoro analogue 52 displayed increased potency (100 nM). Stromelysin inhibition was further improved using a pentafluorophenylalanine substituent which resulted in 70, a 14 nM inhibitor. While gelatinase inhibition was generally poor, the use of 1-(2-pyridyl)piperazine as the amide component usually provided for enhanced activity, with 71 inhibiting gelatinase with a Ki of 770 nM. The combination of this heterocycle with a p-fluorophenylalanine substituent provided the only analogue, 69, with collagenase activity (13 microM). The SAR for analogues described within this series can be rationalized through consideration of the X-ray structure recently attained for70 complexed to stromelysin. Uniquely, this structure showed the inhibitor to be completely orientated on the left side of the enzyme cleft. These results suggest that thiadiazole urea heterocycles which incorporate a substituted phenylalanine can provide selective inhibitors of stromelysin. Careful selection of the amide substituent can also provide for analogues with modest gelatinase inhibition.
N-[4-[4-(Ethylheptylamino)-1-hydroxybutyl]phenyl]methanesulfonamid e, (E)-2-butenedioate (2:1) salt (ibutilide fumarate, 2E), has been found to have Class III antiarrhythmic activity. In an in vitro rabbit heart tissue preparation designed to evaluate the cardiac electrophysiology of potential antiarrhythmic agents, it selectively prolongs the effective refractory period of papillary muscle. In vivo it increases the ventricular refractory period of the canine heart and prevents the ventricular arrhythmias induced by programmed electrical stimulation 3-9 days after a myocardial infarction. This paper describes the synthesis of 2E and a series of related compounds. The in vitro evaluation of the cardiac electrophysiology of these compounds has allowed us to determine the structural requirements for Class III antiarrhythmic activity in this series. Evaluation of the antiarrhythmic activity of 2E and one of the more potent analogues on the late postinfarction ventricular arrhythmias induced by programmed electrical stimulation of the canine myocardium is also described. This activity is compared with that of the Class III antiarrhythmic agent sotalol. Compound 2E appears to be as effective and 10-30 times more potent than sotalol in this model.
Random screening identified N,N'-dicyclohexyl-4-morpholinecarboxamidine (U-18177, 1) as an orally effective nonkaliuretic diuretic in rats. The diuretic profile of 1 and its 1-adamantyl analog (U-37883A, 4) was confirmed orally in dogs, when they were less potent than standard diuretics but showed furosemide-like natriuresis at > or = 100 mumol/kg. However, acute 1 at 61 and 90 mumol/kg iv resulted in lethal cardiac toxicity in dogs. Many analogs of 1 exhibited qualitatively similar diuretic profiles, but none was sufficiently safe to warrant development. Compound 1 also reversed minoxidil's vasodilation in dogs, which led to vascular interaction studies suggesting that analog 4 may block ATP-sensitive K channels. This K channel-blocking mechanism may contribute to the diuretic activity of the series. This is the first report broadly characterizing the diuretic activity of 1 and representative guanidine analogs in rats and dogs and its toxicity and minoxidil-blocking effects in dogs.
A family of 7-(trifluoromethyl)-4-aminoquinolines that are hypotensive agents and that act by a novel sympatholytic mechanism is described. Structure-activity relationships in this series have been elucidated. Some of the more potent hypotensives were evaluated for safety in the mouse. A candidate, 1-[(4-fluorophenyl)sulfonyl]-4-[4-[[7-(trifluoromethyl)-4- quinolinyl]amino]benzoyl]piperazine hydrochloride (losulazine hydrochloride) has been selected for clinical development. Losulazine hydrochloride is a hypotensive agent in the rat, cat, and dog. At acute effective hypotensive doses, it does not block the response of the sympathetic nervous system to stimuli. Both animal pharmacology and clinical experience suggest that losulazine hydrochloride may be free of the clinically limiting side effects that often plague compounds that decrease blood pressure by interfering with autonomic neurogenic function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.