Two 3D Evans–Showell-type POM-based copper–bis-pyrazine–bis-amide complexes show good heterogeneous catalytic activity for the oxidation of benzyl alcohol.
The EcoRI restriction endonuclease requires one divalent metal ion in each of two symmetrical and identical catalytic sites to catalyse double-strand DNA cleavage. Recently, we showed that Cu2+ binds outside the catalytic sites to a pair of new sites at H114 in each sub-unit, and inhibits Mg2+ -catalysed DNA cleavage. In order to provide more detailed structural information on this new metal ion binding site, we performed W-band (~94 GHz) and X-band (~9.5 GHz) electron spin resonance spectroscopic measurements on the EcoRI–DNA–(Cu2+ )2 complex. Cu2+ binding results in two distinct components with different gzz and Azz values. X-band electron spin echo envelope modulation results indicate that both components arise from a Cu2+ coordinated to histidine. This observation is further confirmed by the hyperfine sub-level correlation results. W-band electron nuclear double resonance spectra provide evidence for equatorial coordination of water molecules to the Cu2+ ions.
Two 3D Evans–Showell-type POM-based different transition metals–bis-pyrazine–bis-amide complexes act as heterogeneous catalysts for the oxidation of benzyl alcohol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.