The normal‐weight obese (NWO) syndrome was identified in women whose body weight (BW) and BMI are normal but whose fat mass (FM) is >30%. In these subjects, an early inflammatory status has been demonstrated. The aim was to verify whether oxidative stress occurs in NWO. Sixty age‐matched white Italian women were studied and subdivided as follows: 20 normal‐weight individuals (NW) (BMI <25 kg/m2; FM% <30%); 20 NWO (BMI <25 kg/m2; FM% >30%); 20 preobese‐obese (OB) (BMI >25 kg/m2; FM% >30%). Anthropometric, body composition (by dual‐energy X‐ray absorptiometry) variables, plasma levels of some cytokines, reduced glutathione (GSH), lipid hydroperoxide (LOOH), nitric oxide (NO) metabolites (NO2−/NO3−), antioxidant nonproteic capacity (ANPC) were measured and compared between groups. Glucose and lipid metabolism parameters were assessed. GSH and NO2−/NO3− levels resulted lower in OB and NWO compared to NW (P < 0.01). LOOH levels resulted higher in OB and NWO (P < 0.01). ANPC in NWO was lower than NW but higher with respect to OB (P < 0.01). Correlation analysis revealed strong associations between GSH levels and BW, BMI, FM% (R = −0.45, at least P < 0.05); waist circumference (W) (R = −0.33, P < 0.05); FFM% (R = 0.45, P < 0.01); IL‐1α, IL‐6, IL‐10, IL‐15 (R = −0.39, −0.33, −0.36 −0.34, respectively, P < 0.05); triglycerides (R = −0.416, P < 0.05). LOOH levels were negatively related to FFM% (R = −0.413, P < 0.05) and positively to FM%, IL‐15, TNF‐α, insulin, total cholesterol, low‐density lipoprotein cholesterol, and triglycerides (R = 0.408, R = 0.502, R = 0.341, R = 0.412, R = 0.4036, R = 0.405, R = 0.405, respectively, P < 0.05). The study clearly indicates that NWO, besides being in early inflammatory status, are contextually exposed to an oxidative stress related to metabolic abnormalities occurring in obesity.
Anthocyanins are a class of flavonoids, widely spread throughout the plant kingdom, exhibiting important antioxidant and anti-inflammatory actions as well as chemotherapeutic effects; nonetheless, little is known about the molecular mechanisms by which these activities are exerted. The present study is aimed at investigating molecular mechanisms involved in the chemotherapeutic effects induced by both cyanidin-3-O-b glucopyranoside (CY3G) and its aglycon form, cyanidin chloride (CY), in human colon cancer cells (CaCo2). The effect on cell growth, reactive oxygen species (ROS) formation and cell cycle/stress proteins modification, including ataxia teleangectasia mutated protein (ATM), p53, p21, 8-oxoguanine DNA glycosylase (OGG1), 70 kDa heat shock protein (HSP70) and topoisomerase IIb, as well as on DNA fragmentation, was determined. CY and CY3G treatment affect cell growth and cell proliferation, this latter in a moderately dose-dependent way. Interestingly, ROS level is decreased by any concentration of CY and, only at the lowest concentration, by CY3G. Moreover, the two molecules exert their activities increasing ATM, topoisomerase II, HSP70 and p53 expression. The analysis of DNA fragmentation by Comet assay evidences: (1) a dose-dependent increase in DNA damage only after treatment with CY3G; (2) a more evident trend in the DNA fragmentation when the treatment is performed on agarose embedded cells (cellular atypical Comet); (3) a highly dose-dependent DNA fragmentation induced by CY when the treatment is carried out on agarose embedded naked DNA (acellular atypical Comet). The present findings substantiate a possible chemotherapeutic role of anthocyanins and suggest that CY and CY3G act on CaCo2 by different mechanisms, respectively, ROS-dependent and ROS-independent.
During 2006, 82 samples of human mature milk were collected at Italian hospitals and checked for aflatoxin M1 (AFM1) and ochratoxin A (OTA) by immunoaffinity column extraction and HPLC. AFM1 was detected in four (5%) of milk samples (ranging from < 7 ng/L to 140 ng/L; mean level: 55.35 ng/L); OTA was detected in 61 (74%) of milk samples (ranging from < 5 ng/L to 405 ng/L; mean level: 30.43 ng/L. OTA levels were significantly higher (p less, not double equals 0.05) in milk of habitual consumers of bread, bakery products and cured pork meat. No other statistically significant differences were observed although habitual consumers of pasta (p = 0.059), cookies (p = 0.061) and juices (p = 0.063) had mean contamination values of OTA higher than the moderate consumer. The very few AFB1 positive samples did not allow statistical comparisons. The present study confirms that the occurrence of OTA in human milk is related to maternal dietary habits. The findings support the possibility of dietary recommendations to woman, during pregnancy and lactation, aimed to tentatively reduce the OTA contamination of human milk.
Anthocyanins are natural pigments that could be involved in various health effects. Red oranges are an important dietary source of anthocyanins, including cyanidin 3-glucoside (Cy 3-glc) and an acylated derivative, cyanidin 3-(6 00 -malonyl)-glucoside (Cy 3-malglc). The aim of this study was to evaluate the absorption and metabolism of red orange anthocyanins in rats fed an anthocyanin-enriched diet for 12 d (approximately 2·8 mmol anthocyanins/d). Furthermore, the absorption of these anthocyanins was studied in both the stomach and intestine using in situ models in rats. Anthocyanin metabolites were identified and quantified by HPLC -electrospray ionization tandem MS and HPLC -diode array detection, respectively. The red orange anthocyanins, Cy 3-glc and Cy 3-malglc, as well as their respective methylated derivatives, were recovered in urine after red orange juice intake. The 24 h urinary excretion of total anthocyanins was low (0·081 (SEM 0·009) % of the ingested amount). However, a high proportion (about 20 %) of red orange anthocyanins was absorbed from the stomach. More Cy 3-malglc than Cy 3-glc was absorbed in the intestine. This study thus indicated that red orange juice anthocyanins were rapidly absorbed from both stomach and small intestine, and then excreted in the urine as intact and methylated forms. Moreover, the absorption and metabolism of acylated anthocyanins and non-acylated anthocyanins were similar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.