In lakes and reservoirs with variable water level, gas ebullition can play a substantial role in methane transport in the water column and to the atmosphere. However, measuring methane ebullition from sediment is difficult as releases are highly heterogeneous and intermittent on macro- and micro-scales. In contrast to conventional gas traps and optical methods, hydroacoustic technology allows rapid scanning over large volumes of the water column synoptically to quantify gas bubble abundance. A 120-kHz dual beam downward-looking echosounder was used to measure the size distributions of bubbles that do not resonate at the sonar frequency. Data obtained with this sonar permit accurate calculation and evaluation of ebullition flux from the bottom. A robust relationship was established between gas volumes and backscattering cross-section of individual bubbles in experimental conditions, and rise velocities of bubbles were precisely measured. The volume backscattering coefficient was shown to be a good gauge of the total volume of bubbles per cubic meter of water, allowing the use of a single-beam sonar for measuring volumetric bubble concentrations. Data obtained from hydroacoustic surveys on Lake Kinneret, where gaseous methane is emitted from randomly dispersed sediment sources, indicated that ~90% of bubbles escaping from soft sediments ranged from 1.3 mm to 4.5 mm and ~50% ranged from 2.0 mm to 3.2 mm in equivalent radius. In summer-fall 2001, the gaseous methane fluxes from hypolimnetic sediments was ~10 mmol m-2 d-1, accounting for one-third of the observed methane accumulation in the hypolimnion. This relatively high ebullition rate could be attributed to the gradual decreasing of the mean water level in preceding years
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.