Brain-derived neurotrophic factor (BDNF) is an essential neurotrophin and regulation of its expression is complex due to multiple 5' untranslated exons which are separately spliced to a common coding exon to form unique mRNA transcripts. Disruption of BDNF gene expression is a key to the development of symptoms in Huntington's disease (HD), a fatal neurodegenerative condition. Abnormal epigenetic modifications are associated with reduced gene expression in late-stage HD but such regulation of BDNF gene expression has yet to be investigated. We hypothesized that BDNF gene expression is altered in the HD hippocampus of pre-motor symptomatic R6/1 transgenic HD mice, correlating with a change in the DNA methylation profile. The effects of wheel-running and environmental enrichment on wild-type mice, in association with a proposed environment-mediated correction of BDNF gene expression deficits in HD mice, were also investigated. Using real-time PCR, levels of total BDNF mRNA were found to be reduced in the hippocampus of both male and female HD mice. Wheel-running significantly increased total BDNF gene expression in all groups of mice except male HD mice. In contrast, environmental enrichment significantly increased expression only in male wild-type animals. Further quantification of BDNF exon-specific transcripts revealed sex-specific changes in relation to the effect of the HD mutation and differential effects on gene expression by wheel-running and environmental enrichment. The HD-associated reduction of BDNF gene expression was not due to increased methylation of the gene sequence. Furthermore, environment-induced changes in BDNF gene expression in the wild-type hippocampus were independent of the extent of DNA methylation. Overall, the results of this study provide new insight into the role of BDNF in HD pathogenesis in addition to the mechanisms regulating normal BDNF gene expression.
Huntington's disease (HD) has long been regarded as a disease of the central nervous system, partly due to typical disease symptoms that include loss of motor control, cognitive deficits and neuropsychiatric disturbances. However, the huntingtin gene is ubiquitously expressed throughout the body. We had previously reported a female-specific depression-related behavioural phenotype in the R6/1 transgenic mouse model of HD. One hypothesis suggests that pathology of the hypothalamic-pituitary-adrenal (HPA) axis, the key physiological stress-response system that links central and peripheral organs, is a cause of depression. There is evidence of HPA axis pathology in HD, but whether it contributes to the female R6/1 behavioural phenotype is unclear. We have examined HPA axis response of R6/1 mice following acute stress and found evidence of a female-specific dysregulation of the HPA axis in R6/1 mice, which we further isolated to a hyper-response of adrenal cortical cells to stimulation by adrenocorticotrophin hormone. Interestingly, the adrenal pathophysiology was not detected in mice that had been housed in environmentally enriching conditions, an effect of enrichment that was also reproduced in vitro. This constitutes the first evidence that environmental enrichment can in fact exert a lasting influence on peripheral organ function. Cognitive stimulation may therefore not only have benefits for mental function, but also for overall physiological wellbeing.
Depression is the most common psychiatric disorder in Huntington's disease (HD) patients. In the general population, women are more prone to develop depression and such susceptibility might be related to serotonergic dysregulation. There is yet to be a study of sexual dimorphism in the development and presentation of depression in HD patients. We investigated whether 8-week-old male and female R6/1 transgenic HD mice display depressive-like endophenotypes associated with serotonergic impairments. We also studied the behavioral effects of acute treatment with sertraline. We found that only female HD mice exhibited a decreased preference for saccharin as well as impaired emotionality-related behaviors when assessed on the novelty-suppressed feeding test (NSFT) and the forced-swimming test (FST). The exaggerated immobility time displayed by female HD in the FST was reduced by acute administration of sertraline. We also report an increased response to the 5-HT1A receptor agonist 8-OH-DPAT in inducing hypothermia and a decreased 5-HT2A receptor function in HD animals. While tissue levels of serotonin were reduced in both male and female HD mice, we found that serotonin concentration and hydroxylase-2 (TPH2) mRNA levels were higher in the hippocampus of males compared to female animals. Finally, the antidepressant-like effects of sertraline in the FST were blunted in male HD animals. This study reveals sex-specific depressive-related behaviors during an early stage of HD prior to any cognitive and motor deficits. Our data suggest a crucial role for disrupted serotonin signaling in mediating the sexually dimorphic depression-like phenotype in HD mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.