Abstract. Alkenes are oxidized rapidly in the atmosphere by addition of OH and subsequently O2 leading to the formation of β-hydroxy peroxy radicals. These peroxy radicals react with NO to form β-hydroxy nitrates with a branching ratio α. We quantify α for C2–C8 alkenes at 295 K ± 3 and 993 hPa. The branching ratio can be expressed as α = (0.045 ± 0.016) × N − (0.11 ± 0.05) where N is the number of heavy atoms (excluding the peroxy moiety), and listed errors are 2σ. These branching ratios are larger than previously reported and are similar to those for peroxy radicals formed from H abstraction from alkanes. We find the isomer distributions of β-hydroxy nitrates formed under NO-dominated peroxy radical chemistry to be different than the isomer distribution of hydroxy hydroperoxides produced under HO2-dominated peroxy radical chemistry. Assuming unity yield for the hydroperoxides implies that the branching ratio to form β-hydroxy nitrates increases with substitution of RO2. Deuterium substitution enhances the branching ratio to form hydroxy nitrates in both propene and isoprene by a factor of ~ 1.5. The role of alkene chemistry in the Houston region is re-evaluated using the RONO2 branching ratios reported here. Small alkenes are found to play a significant role in present-day oxidant formation more than a decade (2013) after the 2000 Texas Air Quality Study identified these compounds as major contributors to photochemical smog in Houston.
Abstract. Nitrogen dioxide (NO 2 ) and total alkyl nitrates ( ANs) were measured using thermal dissociation laserinduced fluorescence during the 2012 Uintah Basin Winter Ozone Study (UBWOS) in Utah, USA. The observed NO 2 concentration was highest before sunrise and lowest in the late afternoon, suggestive of a persistent local source of NO 2 coupled with turbulent mixing out of the boundary layer. In contrast, ANs co-varied with solar radiation with a noontime maximum, indicating that local photochemical production combined with rapid mixing and/or deposition was the dominant factor in determining the AN concentrations. We calculate that ANs were a large fraction (∼ 60 %) of the HO x free radical chain termination and show that the temperature dependence of the alkyl nitrate yields enhances the role of ANs in local chemistry during winter by comparison to what would occur in the warmer temperatures of summer.
Abstract. High wintertime ozone levels have been observed in the Uintah Basin, Utah, a sparsely populated rural region with intensive oil and gas operations. The reactive nitrogen budget plays an important role in tropospheric ozone formation. Measurements were taken during three field campaigns in the winters of 2012, 2013 and 2014, which experienced varying climatic conditions. Average concentrations of ozone and total reactive nitrogen were observed to be 2.5 times higher in 2013 than 2012, with 2014 an intermediate year in most respects. However, photochemically active NO x (NO + NO 2 ) remained remarkably similar all three years. Nitric acid comprised roughly half of NO z (≡ NO y − NO x ) in 2013, with nighttime nitric acid formation through heterogeneous uptake of N 2 O 5 contributing approximately 6 times more than daytime formation. In 2012, N 2 O 5 and ClNO 2 were larger components of NO z relative to HNO 3 . The nighttime N 2 O 5 lifetime between the high-ozone year 2013 and the low-ozone year 2012 is lower by a factor of 2.6, and much of this is due to higher aerosol surface area in the high-ozone year of 2013. A box-model simulation supports the importance of nighttime chemistry on the reactive nitrogen budget, showing a large sensitivity of NO x and ozone concentrations to nighttime processes.
Abstract. Organic nitrates in both gas and condensed (aerosol) phases were measured during the Uintah Basin Winter Ozone Study from January to February in 2012. A high degree of correlation between total aerosol volume at diameters less than 500 nm and the particulate organic nitrate concentration indicates that organic nitrates are a consistent, if not dominant, fraction of fine aerosol mass. In contrast, a similar correlation with sub-2.5 µm aerosol volume is weaker. The C : N atomic ratio inferred from field measurements of PM 2.5 and particulate organic nitrate is 34 : 1. Calculations constrained by the observations indicate that both condensation of gas-phase nitrates and heterogeneous reactions of NO 3 / N 2 O 5 are responsible for introducing organic nitrate functionality into the aerosol and that the source molecules are alkanes. Extrapolating the results to urban aerosol suggests organic nitrate production from alkanes may be a major secondary organic aerosol source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.