A simulation-based fuzzy optimization method (SFOM) was proposed for regional groundwater pumping management in considering uncertainties. SFOM enhanced the traditional groundwater management models by incorporating a response matrix model (RMM) into a fuzzy chance-constrained programming (FCCP) framework. RMM was used to approximate the input–output relationship between pumping actions and subsurface hydrologic responses. Due to its explicit expression, RMM could be easily embedded into an optimization model to help seek cost-effective pumping solutions. A groundwater management case in Pinggu District of Beijing, China, was used to demonstrate the method's applicability. The study results showed that the obtained system cost and pumping rates would vary significantly under different confidence levels of constraints satisfaction. The decision-makers could identify the best groundwater pumping strategy through analyzing the tradeoff between the risk of violating the related water resources conservation target and the economic benefit. Compared with traditional approaches, SFOM was particularly advantageous in linking simulation and optimization models together, and tackling uncertainties using fuzzy chance constraints.
ABSTRACT:Wetland is an important land and natural resources with many functions. It is closely related to the survival, reproduction and development of human beings, as well as one of the most important living environments of human beings. Hainan Province, which is located in the northern edge of the tropics with the tropical monsoon climate and covers a variety of wetland types. In this paper, in order to investigate the change of wetland distribution and the variations of area in study region, the remote sensing data of GF-1 and GF-2 from 2009 to 2015 were used. The method used in this study was automatic information extraction and human-computer interaction. The wetland types in study area mainly was divided into three level-1 classes, including coastal wetland, river wetland and lake wetland, and was also divided into eight level-2 classes at the same time. The results showed that the total area of wetland increased 9.13 km 2 in study area from 2009 to 2015, in which the area of constructed wetland increased 6.29 km 2 , the natural wetland increased only 2.83 km 2 . The area of natural wetland has not changed much, but its proportion has been reduced. This reflected that the wetland in the research area has been more artificially intervened since 2009, which caused the increasing of the area of constructed wetland. As the wetland resources can coordinate the sustainable benefit of the society, the protection of natural wetland should be strengthened and valued.
ABSTRACT:The Xisha islands are tropical coral islands in the south sea of China, with special ecological environment. As far away from the inland, they are more sensitive to climate change than inland, and are looked as the window to reflect global environment changes. Since Sansha city established, some of islands were developed. The uninhabited islands are decreasing. To discover the changes of uninhabited islands become more impending. In order to find out the natural status of uninhabited islands, monitoring four years
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.