The influence of temperature and flow rate on the characterization and mechanisms of corrosion product layers from CO 2 corrosion of 13Cr stainless steel was carried out in simulated oilfield solution. Cyclic potentiodynamic polarization method as well as weight loss tests in autoclave were utilized to investigate pitting corrosion behavior at various temperatures. Weight loss tests were performed at 100 and 160°C under dynamic and static flow conditions. At the same time, the significant pitting parameters such as E corr , E pit , E pp , DE, and I pass in cyclic polarization curves at various temperatures were analyzed and compared for revealing the pitting behavior of 13Cr stainless steel. The surface measurement techniques such as SEM, XRD, and XPS were used to detect the corrosion product layers. The results showed that both temperature and flow rate had significant effects on characterization of corrosion product layers or passive films formed on 13Cr stainless steel in CO 2 corrosion system. At high temperature, lots of pits were formed at the localized corrosion areas of metal surfaces. Corrosion rates under the condition of 5 m/s were higher than those under the static condition regardless of the test temperatures.
Purpose – The purpose of this study was to investigate the pitting resistance and assess the critical pitting temperature (CPT) of a super martensitic stainless steel, 00Cr13Ni5Mo2, made in China, considering especially the difference in the pitting corrosion resistance between the domestic super martensitic stainless steel and an imported one. Design/methodology/approach – Potentiodynamic sweep tests were applied to investigate the effects of four NaCl concentrations (weight per cent) of 1, 3.5, 9 and 17, and four testing temperatures of 30, 50, 75 and 90°C on the pitting resistance of the domestic super martensitic stainless steel in the presence of CO2. Potentiostatic sweep tests were utilized to determine the CPT. Furthermore, chemical immersion exposures, implemented according to the appropriate standard were used to evaluate the difference in the pitting corrosion resistance between the domestic super martensitic stainless steel and an imported one. In addition, the morphology of pits was analyzed using a scanning electron microscope. Finding – The pitting potential of the domestic super martensitic stainless steel decreased with an increase in NaCl concentration and temperature in the presence of CO2. The CPT of the domestic super martensitic stainless steel measured by potentiostatic polarization was 41.16°C. Two types of typical corrosion pits, closed pits formed at 35°C and open pits formed at 50°C, were observed. Furthermore, compared to the super martensitic stainless steel made in Japan, the domestic one was better in terms of pitting potential, corrosion rate and the density of the pits, but worse in terms of the depth of the pits, which may result in a risk of corrosion perforation of tubing and casings. Originality/value – The paper highlights that chloride ions, temperature and the presence of CO2 play an important role on the pitting resistance of super martensitic stainless steel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.