Thermal and pressure inactivation of myrosinase from broccoli was kinetically investigated. Thermal inactivation proceeded in the temperature range 30-60 degrees C. These results indicate that myrosinase is rather thermolabile, as compared to other food quality related enzymes such as polyphenol oxidase, lipoxygenase, pectinmethylesterase, and peroxidase. In addition, a consecutive step model was shown to be efficient in modeling the inactivation curves. Two possible inactivation mechanisms corresponding to the consecutive step model were postulated. Pressure inactivation at 20 degrees C occurred at pressures between 200 and 450 MPa. In addition to its thermal sensitivity, the enzyme likewise is rather pressure sensitive as compared to the above-mentioned food quality related enzymes. By analogy with thermal inactivation, a consecutive step model could adequately describe pressure inactivation curves. At 35 degrees C, pressure inactivation was studied in the range between 0. 1 and 450 MPa. Application of low pressure (<350 MPa) resulted in retardation of thermal inactivation, indicating an antagonistic or protective effect of low pressure.
Throughout the last decade, high pressure technology has been shown to offer great potential to the food processing and preservation industry in delivering safe and high quality products. Implementation of this new technology will be largely facilitated when a scientific basis to assess quantitatively the impact of high pressure processes on food safety and quality becomes available. Besides, quantitative data on the effects of pressure and temperature on safety and quality aspects of foods are indispensable for design and evaluation of optimal high pressure processes, i.e., processes resulting in maximal quality retention within the constraints of the required reduction of microbial load and enzyme activity. Indeed it has to be stressed that new technologies should deliver, apart from the promised quality improvement, an equivalent or preferably enhanced level of safety. The present paper will give an overview from a quantitative point of view of the combined effects of pressure and temperature on enzymes related to quality of fruits and vegetables. Complete kinetic characterization of the inactivation of the individual enzymes will be discussed, as well as the use of integrated kinetic information in process engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.