The aim of this study was to estimate genetic parameters for different precocious calving criteria and their relationship with reproductive, growth, carcass and feed efficiency in Nellore cattle using the single‐step genomic BLUP. The reproductive traits used were probability of precocious calving (PPC) at 24 (PPC24), 26 (PPC26), 28 (PPC28) and 30 (PPC30) months of age, stayability (STAY) and scrotal circumference at 455 days of age (SC455). Growth traits such as weights at 240 (W240) and 455 (W455) days of age and adult weight (AW) were used. Rib eye area (REA), subcutaneous fat thickness (SFT), rump fat thickness (RFT) and residual feed intake (RFI) were included in the analyses. The estimation of genetic parameters was performed using a bi‐trait threshold model including genomic information in a single‐step approach. Heritability for PPC traits was moderate to high (0.29–0.56) with highest estimates for PPC24 (0.56) and PPC26 (0.50). Genetic correlation estimates between PPC and STAY weakened as a function of calving age. Correlation with SC455, growth and carcass traits were low (0.25–0.31; −0.22 to 0.04; −0.09 to 0.18, respectively), the same occurs with RFI (−0.09 to 0.08), this suggests independence between female sexual precocity and feed efficiency traits. The results of this study encourage the use of PPC traits in Nellore cattle because the selection for such trait would not have a negative impact on reproductive, growth, carcass and feed efficiency indicator traits. Stayability for sexual precocious heifers (PPC24 and PPC26) must be redefined to avoid incorrectly phenotype assignment.
The aim of this study was to estimate genetic parameters and identify genomic regions associated with carcass traits obtained by ultrasound and visual scores in Nellore cattle. Data from ~66,000 animals from the National Association of Breeders and Researchers (ANCP) were used. The variance components for backfat thickness, rump fat thickness and Longissimus muscle area (LMA) were estimated considering a linear model whereas a threshold model for body structure (BS), finishing precocity (FP) and musculature (MS) traits. The SNP solutions were estimated using the ssGBLUP approach by considering windows of 10 consecutive SNPs. Regions that accounted for more than 1.0% of the additive genetic variance were used. Genes identified within the significant windows, such as FOXA3, AP2S1, FKRP, NPASI and ATP6V1G1, were found to be related with MS, while OMA1 and FFGY with BS and FP traits. The PLTP, TNNC2 and GPAT2 genes were found in the regions associated with LMA, as well as TKT, FNDC5 and CHRND can strongly be related with fat deposition. Gene enrichment analysis revealed processes that might be directly influenced the organism growth and development. These results should help to better understand the genetic and physiological mechanisms regulating growth and body composition, muscle tissue development and subcutaneous fat expression, and this information might be useful for future genomic studies in Nellore cattle.
Proteins of 165, 90, and 68 kDa are specifically recognized by antibodies present in the sera of vitiligo patients and in all patients with genetic vitiligo. Whether or not these proteins might be implicated in the destruction of melanocytes by the immune system in vitiligo remains to be evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.