Climate change will alter freshwater ecosystems but specific effects will vary among regions and the type of water body. Here, we give an integrative review of the observed and predicted impacts of climate change on shallow lakes in the Netherlands and put these impacts in an international perspective. Most of these lakes are man-made and have preset water levels and poorly developed littoral zones. Relevant climatic factors for these ecosystems are temperature, ice-cover and wind. Secondary factors affected by climate include nutrient loading, residence time and water levels. We reviewed the relevant literature in order to assess the impact of climate change on these lakes. We focussed on six management objectives as bioindicators for the functioning of these ecosystems: target species, nuisance species, invading species, transparency, carrying capacity and biodiversity. We conclude that climate change will likely (i) reduce the numbers of several target species of birds; (ii) favour and stabilize cyanobacterial dominance in phytoplankton communities; (iii) cause more serious incidents of botulism among waterfowl and enhance the spreading of mosquito borne diseases; (iv) benefit invaders originating from the Ponto-Caspian region; (v) stabilize turbid, phytoplankton-dominated systems, thus counteracting restoration measures; (vi) destabilize macrophyte-dominated clear-water lakes; (vii) increase the carrying capacity of primary producers, especially phytoplankton, thus mimicking eutrophication; (viii) affect higher trophic levels as a result of enhanced primary production; (ix) have a negative impact on biodiversity which is linked to the clear water state; (x) affect biodiversity by changing the disturbance regime. Water managers can counteract these developments by reduction of nutrient loading, development of the littoral zone, compartmentalization of lakes and fisheries management
Microcystins, toxins produced by cyanobacteria, may play a role in fish kills, although their specific contribution remains unclear. A better understanding of the eco-toxicological effects of microcystins is hampered by a lack of analyses at different trophic levels in lake foodwebs. We present 3 years of monitoring data, and directly compare the transfer of microcystin in the foodweb starting with the uptake of (toxic) cyanobacteria by two different filter feeders: the cladoceran Daphnia galeata and the zebra mussel Dreissena polymorpha. Furthermore foodwebs are compared in years in which the colonial cyanobacterium Microcystis aeruginosa or the filamentous cyanobacterium Planktothrix agardhii dominated; there are implications in terms of the types and amount of microcystins produced and in the ingestion of cyanobacteria. Microcystin concentrations in the seston commonly reached levels where harmful effects on zooplankton are to be expected. Likewise, concentrations in zooplankton reached levels where intoxication of fish is likely. The food chain starting with Dreissena (consumed by roach and diving ducks) remained relatively free from microcystins. Liver damage, typical for exposure to microcystins, was observed in a large fraction of the populations of different fish species, although no relation with the amount of microcystin could be established. Microcystin levels were especially high in the livers of planktivorous fish, mainly smelt. This puts piscivorous birds at risk. We found no evidence for biomagnification of microcystins. Concentrations in filter feeders were always much below those in the seston, and yet vectorial transport to higher trophic levels took place. Concentrations of microcystin in smelt liver exceeded those in the diet of these fish, but it is incorrect to compare levels in a selected organ to those in a whole organism (zooplankton). The discussion focuses on the implications of detoxication and covalent binding of microcystin for the transfer of the toxin in the foodweb. It seems likely that microcystins are one, but not the sole, factor involved in fish kills during blooms of cyanobacteria.
This paper critically reviews the published works on lake restoration in north-western Europe, with the aim to highlight the causes of failures of lake biomanipulation, and to identify the main bottlenecks that have impeded progress. More importantly, we explore the prospects of applying new ecotechnological measures to lakes with a focus on shallow lakes. These complementary measures are: (1) reduction of sediment resuspension; (2) water-level management; and (3) the use in shallow lakes of bivalves as effective grazers on lake seston, especially when cyanobacteria are dominant. If the sustainability of the positive effects of biomanipulation is considered over a decade, there are probably more cases of failures than successes. The failures can be ascribed to several bottlenecks that include: (1) inadequate reduction of allochthonous phosphorus (P) and an increase in autochthonous P inputs, i.e. release of P from the lake sediments following reductions of external P inputs; (2) poor edibility of filamentous and colonial cyanobacteria to daphnids; (3) inadequate coverage of the lake area by macrophytes partly due to foraging on the macrophytes by both fish and birds; (4) ineffective reduction of planktivorous fish biomass and our inability to maintain the fish mass to a 'low level' for longer periods; and (5) failure of northern pike (Esox lucius) after its transplantation to the lakes to develop a population level that can control planktivorous fish to desired low levels. Three potentially complementary ecotechnological measures are discussed. The first such measure concerns prevention of sediment resuspension in lakes by creating islands in order to minimise the wind fetch to reduce the wave amplitude. The second measure involves allowing greater water-level fluctuations (WLF) in lakes as planned in lowland countries like the Netherlands; WLF are likely to allow more space for water, and may lead to improved water quality and higher biodiversity. The third ecotechnological measure relates to grazer populations that complement herbivorous zooplankton to regulate phytoplankton, particularly to control cyanobacterial blooms. For this, the bivalve Dreissena polymorpha appears to be a good potential candidate for grazing on phytoplankton, especially in shallow eutrophic lakes that are dominated by filamentous and toxic cyanobacteria (e.g. Planktothrix agardhii and Microcystis aeruginosa).
SUMMARY1. Selective grazing of adults and larvae of the zebra mussel (Dreissena polymorpha) on phytoplankton and detritus from both laboratory cultures and natural seston was quantified using flow cytometry. 2. Mean clearance rate of adult zebra mussels was higher on a mixture of the green alga Scenedesmus and the cyanobacterium Microcystis than when Scenedesmus was offered as single food, suggesting selective feeding by the mussels. 3. Feeding on lake seston both adults and larvae showed a higher clearance rate on phytoplankton than on detritus particles, suggesting that zebra mussels select for phytoplankton. Furthermore, it was noted that adults preferred seston particles in the 0-1 and 30-100 lm size ranges. 4. In our study, zebra mussels did not discriminate against cyanobacteria, and our results indicate that they may even ingest them preferentially.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.