Article:Bree, N., Wrzosek-Lipska, K., Petts, A. et al. (67 more authors) (2014) Shape coexistence in the neutron-deficient even-even 182-188Hg isotopes studied via Coulomb excitation.
Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R^{3}B/LAND setup with incident beam energies in the range of 300-450 MeV/u. The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type ^{A}O(p,2p)^{A-1}N have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry.
When a heavy atomic nucleus splits (fission), the resulting fragments are observed to emerge spinning 1 ; this phenomenon has been a mystery in nuclear physics for over 40 years 2,3 . The internal generation of six or seven units of angular momentum in each fragment is particularly puzzling for systems that start with zero, or almost zero, spin. There are currently no experimental observations that enable decisive discrimination between the many competing theories for the mechanism that generates the angular momentum [4][5][6][7][8][9][10][11][12] . Nevertheless, the consensus is that excitation of collective vibrational modes generates the intrinsic spin before the nucleus splits (pre-scission). Here we show that there is no significant correlation between the spins of the fragment partners, which leads us to conclude that angular momentum in fission is actually generated after the nucleus splits (post-scission). We present comprehensive data showing that the average spin is strongly mass-dependent, varying in saw-tooth distributions. We observe no notable dependence of fragment spin on the mass or charge of the partner nucleus, confirming the uncorrelated post-scission nature of the spin mechanism. To explain these observations, we propose that the collective motion of nucleons in the ruptured neck of the fissioning system generates two independent torques, analogous to the snapping of an elastic band. A parameterization based on occupation of angular momentum states according to statistical theory describes the full range of experimental data well. This insight into the role of spin in nuclear fission is not only important for the fundamental understanding and theoretical description of fission, but also has consequences for the γ-ray heating problem in nuclear reactors 13,14 , for the study of the structure of neutron-rich isotopes 15,16 , and for the synthesis and stability of super-heavy elements 17,18 .
The β − decay of 34 Mg was used to study the 34 Al nucleus through γ spectroscopy at the Isotope Separator On-Line facility of CERN. Previous studies identified two β-decaying states in 34 Al having spin-parity assignments J π = 4 − dominated by the normal configuration π (d 5/2) −1 ⊗ ν(f 7/2) and J π = 1 + by the intruder configuration π (d 5/2) −1 ⊗ ν(d 3/2) −1 (f 7/2) 2. Their unknown ordering and relative energy have been the subject of debate for the placement of 34 Al inside or outside the N = 20 "island of inversion." We report here that the 1 + intruder lies only 46.6 keV above the 4 − ground state. In addition, a new half-life of T 1/2 = 44.9(4) ms, that is twice as long as the previously measured 20(10) ms, has been determined for 34 Mg. Large-scale shell-model calculations with the recently developed SDPF-U-MIX interaction are compared with the new data and used to interpret the mechanisms at play at the very border of the N = 20 island of inversion.
Excited states in 133 Sn were investigated through the β decay of 133 In at the ISOLDE facility. The ISOLDE Resonance Ionization Laser Ion Source (RILIS) provided isomer-selective ionization for 133 In, allowing us to study separately, and in detail, the β-decay branch of 133 In J π = (9/2 +) ground state and its J π = (1/2 −) isomer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.