Accuracy in quantitative real-time polymerase chain reaction (qPCR) requires the use of stable endogenous controls. Normalization with multiple reference genes is the gold standard, but their identification is a laborious task, especially in species with limited sequence information. Coffee (Coffea ssp.) is an important agricultural commodity and, due to its economic relevance, is the subject of increasing research in genetics and biotechnology, in which gene expression analysis is one of the most important fields. Notwithstanding, relatively few works have focused on the analysis of gene expression in coffee. Moreover, most of these works have used less accurate techniques such as northern blot assays instead of more accurate techniques (e.g., qPCR) that have already been extensively used in other plant species. Aiming to boost the use of qPCR in studies of gene expression in coffee, we uncovered reference genes to be used in a number of different experimental conditions. Using two distinct algorithms implemented by geNorm and Norm Finder, we evaluated a total of eight candidate reference genes (psaB, PP2A, AP47, S24, GAPDH, rpl39, UBQ10, and UBI9) in four different experimental sets (control versus drought-stressed leaves, control versus droughtstressed roots, leaves of three different coffee cultivars, and four different coffee organs). The most suitable combination of reference genes was indicated in each experimental set for use as internal control for reliable qPCR data normalization. This study also provides useful guidelines for reference gene selection for researchers working with coffee plant samples under conditions other than those tested here.
Exploiting the biolistic process we have generated stable transgenic bean (Phaseolus vulgaris L.) plants with unlinked and linked foreign genes. Co-transformation was conducted using plasmid constructions containing a fusion of the gus and neo genes, which were co-introduced with the methionine-rich 2S albumin gene isolated from the Brazil nut and the antisense sequence of AC1, AC2, AC3 and BC1 genes from the bean golden mosaic geminivirus. The results revealed a co-transformation frequency ranging from 40% to 50% when using unlinked genes and 100% for linked genes. The introduced foreign genes were inherited in a Mendelian fashion in most of the transgenic bean lines. PCR and Southern blot hybridization confirmed the integration of the foreign genes in the plant genome.
Recently, new serine integrases have been identified, increasing the possibility of scaling up genomic modulation tools. Here, we describe the use of unidirectional genetic switches to evaluate the functionality of six serine integrases in different eukaryotic systems: the HEK 293T cell lineage, bovine fibroblasts and plant protoplasts. Moreover, integrase activity was also tested in human cell types of therapeutic interest: peripheral blood mononuclear cells (PBMCs), neural stem cells (NSCs) and undifferentiated embryonic stem (ES) cells. The switches were composed of plasmids designed to flip two different genetic parts driven by serine integrases. Cell-based assays were evaluated by measurement of EGFP fluorescence and by molecular analysis of attL/attR sites formation after integrase functionality. Our results demonstrate that all the integrases were capable of inverting the targeted DNA sequences, exhibiting distinct performances based on the cell type or the switchable genetic sequence. These results should support the development of tunable genetic circuits to regulate eukaryotic gene expression.
Bean (Phaseolus vulgaris), an important component in the diet of people in developing countries, has low levels of the essential amino acid, methionine. We have attempted to correct this deficiency by introducing a transgene coding for a methioninerich storage albumin from the Brazil nut via biolistic methods. The transgene's coding sequence was driven by a doubled 35S CaMV promoter and AMV enhancer sequences. The transgene was stable and correctly expressed in homozygous R 2 to R 5 seeds. In two of the five transgenic lines the methionine content was significantly increased (14 and 23%) over the values found in untransformed plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.