In this work an innovative numerical approach is proposed, which combines the simplicity of low-order finite elements connectivity with the geometric flexibility of meshless methods. The natural neighbour concept is applied to enforce the nodal connectivity. Resorting to the Delaunay triangulation a background integration mesh is constructed, completely dependent on the nodal mesh. The nodal connectivity is imposed through nodal sets with reduce size, reducing significantly the test function construction cost. The interpolations functions, constructed using Euclidian norms, are easily obtained. To prove the good behaviour of the proposed interpolation function several data-fitting examples and first-order partial differential equations are solved. The proposed numerical method is also extended to the elastostatic analysis, where classic solid mechanics benchmark examples are solved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.