In the present work we studied, by chemiluminescence measurements, the influence of lead on the production of reactive oxygen species (ROS) in haemolysates obtained from human erythrocytes incubated in the presence of different concentrations of lead acetate. Moreover, we evaluated the modification of proteins and lipids in human erythrocyte and lymphocyte membranes by using the fluorescence probes N-(1-pyrene)maleimide (PM), laurdan and pyrene. No significant changes in chemiluminescence were detected for erythrocytes incubated with 1-10 microM lead acetate for 3 h at 37 degrees C. By increasing the lead acetate concentration in cell suspensions up to 50 microM for the same incubation time, the percentage of chemiluminescence inhibition was ca. 20%. It was shown that, after incorporating fluorescence probes in the membrane lipid bilayer of erythrocytes and lymphocytes treated with 10 and/or 50 microM lead acetate, the total fluorescence intensity and the excimer to monomer intensity ratio of PM decreased and the generalized fluorescence polarization of laurdan decreased by 10-15%. The pyrene excimerization coefficient (kappa(ex)) increased by 20% (in comparison with a magnitude of kappa(ex) for white membranes isolated from intact erythrocytes) with 6-10 microM lead acetate for 3 h at 37 degrees C. The data obtained suggest that the effect of low concentrations of lead acetate does not cause production of ROS in erythrocytes in vitro, but can change the physicochemical state of proteins and lipids in erythrocyte and lymphocyte membranes. This effect is important because it influences the enzymatic activity and the functionality of receptors and channels present at the plasma membrane level, thus modulating the molecular composition of the intracellular space and cell functions.
The last decade has seen unprecedented upsurge of interest in the structural and toxic properties of particular type of protein aggregates, amyloid fibrils, associated with a number of pathological states. In the present study fluorescence spectroscopy technique has been employed to gain further insight into the membrane-related mechanisms of amyloid toxicity. To this end, erythrocyte model system composed of liposomes and hemoglobin was subjected to the action of oligomeric and fibrillar lysozyme. Acrylamide quenching of lysozyme fluorescence showed that solvent accessibility of Trp62 and Trp108 increases upon the protein fibrillization. Resonance energy transfer measurements suggested the possibility of direct complexation between hemoglobin and aggregated lysozyme. Using the novel squaraine dye SQ-1 it was demonstrated that aggregated lysozyme is capable of inhibiting lipid peroxidation processes. Fluorescent probes pyrene, Prodan and diphenylhexatriene were employed to characterize the membrane-modifying properties of hemoglobin and lysozyme. Both oligomeric and fibrillar forms of lysozyme were found to exert condensing influence on lipid bilayer structure, with the membrane effects of fibrils being less amenable to modulation by hemoglobin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.