Male-specific lethal-2 (msl-2) is a RING finger protein that is required for X chromosome dosage compensation in Drosophila males. Consistent with the formation of a dosage compensation protein complex, msl-2 colocalizes with the other MSL proteins on the male X chromosome and coimmunoprecipitates with msl-1 from male larval extracts. Ectopic expression of msl-2 in females results in the appearance of the other MSL dosage compensation regulators on the female X chromosomes and decreased female viability. We suggest that msl-2 RNA is the primary target of SxI regulation in the dosage compensation pathway and present a speculative model for the regulation of two distinct modes of dosage compensation by SxI.
Drosophila MSL proteins are thought to act within a complex to elevate transcription from the male X chromosome. We found that the MSL1, MSL2 and MSL3 proteins are associated in immunoprecipitations, chromatographic steps and in the yeast two-hybrid system, but that the MLE protein is not tightly complexed in these assays. We focused our analysis on the MSL2-MSL1 interaction, which is postulated to play a critical role in MSL complex association with the X chromosome. Using a modified two-hybrid assay, we isolated missense mutations in MSL2 that disrupt its interaction with MSL1. Eleven out of 12 mutated residues clustered around the first zinc-binding site of the RING finger domain were conserved in a Drosophila virilis MSL2 homolog. Two pre-existing msl2 alleles, which fail to support male viability in vivo, have lesions in the same region of the RING finger. We tested these in the two-hybrid system and found that they are also defective in interaction with MSL1. Mutation of the second zinc-binding site had little effect on MSL1 binding, suggesting that this portion of the RING finger may have a distinct function. Our data support a model in which MSL2-MSL1 interaction nucleates assembly of an MSL complex, with which MLE is weakly or transiently associated.
MSL-2 is required for the male-specific assembly of a dosage compensation regulatory complex on the X chromosome of Drosophila melanogaster. We found that MSL-2 binds in a reproducible, partial pattern to the male Xchromosome in the absence of MLE or MSL-3, or when ectopically expressed at a low level in females. Moreover, the pattern of MSL-2 binding corresponds precisely in each case to that of MSL-1, suggesting that the two proteins function together to associate with the X. Consistent with this hypothesis, we isolated EMSinduced loss of function msl-1 and msl-2 alleles in a screen for suppressors of the toxic effects of MSL-2 expression in females. We also used sitedirected mutagenesis to determine the importance of the MSL-2 RING finger domain and second cysteine-rich motif. The mutations, including those in conserved zinc coordinating cysteines, confirm that the RING finger is essential for MSL-2 function, while suggesting a less stringent requirement for an intact second motif.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.