Our knowledge of the form of lateralized sleep behavior, known as unihemispheric slow wave sleep (USWS), seen in all members of the order Cetacea examined to date, is described. We trace the discovery of this phenotypically unusual form of mammalian sleep and highlight specific aspects that are different from sleep in terrestrial mammals. We find that for cetaceans sleep is characterized by USWS, a negligible amount or complete absence of rapid eye movement (REM) sleep, and a varying degree of movement during sleep associated with body size, and an asymmetrical eye state. We then compare the anatomy of the mammalian somnogenic system with what is known in cetaceans, highlighting areas where additional knowledge is needed to understand cetacean sleep. Three suggested functions of USWS (facilitation of movement, more efficient sensory processing and control of breathing) are discussed. Lastly, the possible selection pressures leading to this form of sleep are examined, leading us to the suggestion that the selection pressure necessitating the evolution of cetacean sleep was most likely the need to offset heat loss to the water from birth and throughout life. Aspects such as sentinel functions and breathing are likely to be proximate evolutionary phenomenon of this form of sleep.
Virtually all land mammals and birds have two sleep states: slow-wave sleep (SWS) and rapid eye movement (REM) sleep [1, 2]. After deprivation of REM sleep by repeated awakenings, mammals increase REM sleep time [3], supporting the idea that REM sleep is homeostatically regulated. Some evidence suggests that periods of REM sleep deprivation for a week or more cause physiological dysfunction and eventual death [4, 5]. However, separating the effects of REM sleep loss from the stress of repeated awakening is difficult [2, 6]. The northern fur seal (Callorhinus ursinus) is a semiaquatic mammal [7]. It can sleep on land and in seawater. The fur seal is unique in showing both the bilateral SWS seen in most mammals and the asymmetric sleep previously reported in cetaceans [8]. Here we show that when the fur seal stays in seawater, where it spends most of its life [7], it goes without or greatly reduces REM sleep for days or weeks. After this nearly complete elimination of REM, it displays minimal or no REM rebound upon returning to baseline conditions. Our data are consistent with the hypothesis that REM sleep may serve to reverse the reduced brain temperature and metabolism effects of bilateral nonREM sleep, a state that is greatly reduced when the fur seal is in the seawater, rather than REM sleep being directly homeostatically regulated. This can explain the absence of REM sleep in the dolphin and other cetaceans and its increasing proportion as the end of the sleep period approaches in humans and other mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.