Summary
Rift Valley fever virus (RVFV) poses a major threat of introduction to several continents, including North America. Such an introduction could cause significant losses to the livestock industry, in addition to substantial human morbidity and mortality. Because of the opportunistic blood host selection of Culex tarsalis mosquitoes, we hypothesized that this species could be an important bridge vector of RVFV near feedlots in the event of an introduction. We investigated the mosquito community composition at livestock feedlots and surrounding natural and residential areas to determine differences in mosquito relative abundance and blood feeding patterns attributed to cattle feeding operations. DNA extracted from abdomens of blood‐fed mosquitoes were sequenced to determine host identity. Multivariate regression analyses revealed differences between mosquito community assemblages at feedlots and non‐feedlot sites (p < 0.05), with this effect driven largely by differential abundances of Aedes vexans (padj < 0.05). Mosquito diversity was lower on feedlots than surrounding areas for three out of four feedlots. Culex tarsalis was abundant at both feedlots and nearby sites. Diverse vertebrate blood meals were detected in Cx. tarsalis at non‐feedlot sites, with a shift towards feeding on cattle at feedlots. These data support a potential for Cx. tarsalis to serve as a bridge vector of RVFV between livestock and humans in Colorado.
Hematophagous arthropod bloodmeal identification has remained a challenge in the field of vector biology, but these studies are important to understand blood feeding patterns of arthropods, spatial, and temporal patterns in arbovirus transmission cycles, and risk of human and veterinary disease. We investigated the use of an existing vertebrate primer set for use on the droplet digital polymerase chain reaction (ddPCR) platform, to explore the use of this technology in the identification and quantification of vertebrate DNA in mosquito blood meals. Host DNA was detectable 48-h post-engorgement in some mosquitoes by ddPCR, compared with 24-h post-engorgement using traditional PCR. The capability of ddPCR for absolute quantification of template DNA offers unique potential applications of this new technology to field studies on the ecology of vector-borne diseases, but currently with limited scope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.