The possibility of using inorganic ion exchangers based on zirconium hydrophosphate and a weakly cross-linked cation-exchange resin for continuous purification of dilute nickel-containing solution by a combined method of electrodialysis and ion exchange was studied.
Cr (VI) transport through a composite ceramic membrane containing an ionexchange component, namely xerogel of hydrated zirconium dioxide, was investigated. The diffusion coefficient of Cr (VI) species through the membrane, which has been determined under open circuit conditions, is 1.80 Â 10 À10 m 2 s
À1. The transport number of Cr (VI) species through the ceramic membrane was found to rise with increasing voltage and reached 0.17 under ''over-limiting current'' conditions. On the other hand, the transport of chromate ions through hydrogel of hydrated zirconium dioxide becomes more intensive with a decrease in potential drop through the system involving ion-exchanger bed and ceramic membrane due to decrease in the membrane resistance. The diffusion coefficient of Cr (VI) ions in hydrogel of the inorganic ion exchanger was estimated as 4.36 Â 10 À12 m 2 s
À1. A possibility of Cr (VI) removal from a weakly acidic diluted solution using an electro-deionization method was shown: the degree of solution purification was found to reach 50%. The transport of species is realized through both the solution and the ion exchanger.
Organic-inorganic membranes were obtained by stepwise modification of poly(ethyleneterephthalate) track membrane with nanoparticles of zirconium hydrophosphate. The modifier was inserted inside pores of the polymer, a size of which is 0.33 μm. Inner active layer was formed by this manner. Evolution of morphology and functional properties of the membranes were investigated using methods of porosimetry, potentiometry and electron microscopy. The nanoparticles (4 to 10 nm) were found to form aggregates, which block pores of the polymer. Pores between the aggregates (4 to 8 nm) as well as considerable surface charge density provide significant transport numbers of counter ions (up to 0.86 for Na+). The materials were applied to baromembrane separation of corn distillery. It was found that precipitate is formed mainly inside the pores of the pristine membrane. In the case of the organic-inorganic material, the deposition occurs onto the outer surface and can be removed by mechanical way. Location of the active layer inside membranes protects it against damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.