Biopesticides based on Bacillus thuringiensis and genetically modified plants with genes from this bacterium have been used to control Plutella xylostella (L.) and Spodoptera frugiperda (J.E. Smith). However, the selection pressure imposed by these technologies may undermine the efficiency of this important alternative to synthetic insecticides. Toxins with different modes of action allow a satisfactory control of these insects. The purpose of this study was to characterize the protein and gene contents of 20 B. thuringiensis isolates from soil and insect samples collected in several areas of Northeast Brazil which are active against P. xylostella and S. frugiperda. Protein profiles were obtained by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Polymerase chain reaction assays were used to determine toxin genes present within bacterial isolates. The protein profile of the majority of the isolates produced bands of approximately 130 kDa, suggesting the presence of Cry1, Cry8 and Cry9 proteins. The gene content of the isolates of B. thuringiensis investigated showed different gene profiles. Isolates LIIT-4306 and LIIT-4311 were the most actives against both species, with LC50 of 0.03 and 0.02 × 10(8) spores mL(-1), respectively, for P. xylostella, and LC50 of 0.001 × 10(8) spores mL(-1) for S. frugiperda. These isolates carried the cry1, cry1Aa, cry1Ab, cry1Ac, cry1B, cry1C, cry1D, cry1F, cry2, cry2A, cry8, and cry9C genes. The obtained gene profiles showed great potential for the control of P. xylostella and S. frugiperda, primarily because of the presence of several cry1A genes, which are found in isolates of B. thuringiensis active against these insects.
Bacillus thuringiensis (Berliner) bears essential characteristics in the control of insect pests, such as its unique mode of action, which confers specificity and selectivity. This study assessed cry gene contents from Bt strains and their entomotoxicity against Diatraea saccharalis (F.) and Diatraea flavipennella (Box) (Lepidoptera: Crambidae). Bioassays with Bt strains were performed against neonates to evaluate their lethal and sublethal activities and were further analyzed by PCR, using primers to identify toxin genes. For D. saccharalis and D. flavipennella, 16 and 18 strains showed over 30% larval mortality in the 7th day, respectively. The LC values of strains for D. saccharalis varied from 0.08 × 10 (LIIT-0105) to 4104 × 10 (LIIT-2707) spores + crystals mL. For D. flavipennella, the LC values of strains varied from 0.40 × 10 (LIIT-2707) to 542 × 10 (LIIT-2109) spores + crystals mL. For the LIIT-0105 strain, which was the most toxic to D. saccharalis, the genes cry1Aa, cry1Ab, cry1Ac, cry1B, cry1C, cry1D, cry1F, cry1I, cry2Aa, cry2Ab, cry8, and cry9C were detected, whereas for the strain LIIT-2707, which was the most toxic to D. flavipennella, detected genes were cry1Aa, cry1Ab, cry1Ac, cry1B, cry1D, cry1F, cry1I, cry2Aa, cry2Ab, and cry9. The toxicity data and toxin gene content in these strains of Bt suggest a great variability of activity with potential to be used in the development of novel biopesticides or as source of resistance genes that can be expressed in plants to control pests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.