AMP-activated kinase (AMPK) is a highly conserved heterotrimeric kinase that functions as a metabolic master switch to coordinate cellular enzymes involved in carbohydrate and fat metabolism that regulate ATP conservation and synthesis. AMPK is activated by conditions that increase AMP-to-ATP ratio, such as exercise and metabolic stress. In the present study, we probed whether AMPK was expressed in vascular smooth muscle and would be activated by metabolic stress. Endothelium-denuded porcine carotid artery segments were metabolically challenged with 2-deoxyglucose (10 mM) plus N(2) (N(2)-2DG). These vessels exhibited a rapid increase in AMPK activity by 1 min that was near maximal by 20 min. AMPK inactivation on return to normal physiological saline was approximately 50% in 1 min and fully recovered by 5 min. Immunoprecipitation of the alpha(1)- and alpha(2)-catalytic subunit followed by immunoblot analysis for [P]Thr(172)-AMPK indicates that alpha(1)-AMPK accounts for all activity. Little if any alpha(2)-AMPK was detected in carotid smooth muscle. AMPK activity was not increased by contractile agonist (endothelin-1) or by the reported AMPK activators 5-aminoimidazole-4-carboxamide ribofuranoside (2 mM), metformin (2 mM), or phenformin (0.2 mM). AMPK activation by N(2)-2DG was associated with a rapid and pronounced reduction in endothelin-induced force and reduced phosphorylation of Akt and Erk 1/2. These data demonstrate that AMPK expression differs in vascular smooth muscle compared with striated muscles and that activation and inactivation after metabolic stress occur rapidly and are associated with signaling pathways that may regulate smooth-muscle contraction.
We tested the hypothesis that exercise training reduces the sensitivity of coronary smooth muscle to endothelin-1 (ET-1), with the adaptation being greater in male than in female miniature swine. The efficacy of training was similar in males and females. Cumulative ET-1 contractile responses of coronary branches and left circumflex artery were significantly shifted to the right in exercise-trained (Ex) males but not in Ex females. Analyses of the excitatory concentration causing a 50% response (EC(50)) showed a 1.7- to 2.2-fold shift in Ex males with no change in maximum tension. Nonselective blockade of K-channel activity with tetraethylammonium (TEA; 30-50 mM) significantly shifted the EC(50) to a lower concentration in both Ex males (1.25-fold) and Ex females (2.2-fold) but not in sedentary (Sed) groups. Females (combined Sed and Ex) exhibited a greater response to TEA than did combined Sed and Ex males. Changes in [(32)P]phosphatidic acid ([(32)P]PA) provided an indicator of ET-1-induced phospholipase activity. The magnitude of the [(32)P]PA response was reduced by Ex in both males and females without affecting the EC(50). It is concluded that the contractile sensitivity of coronary arteries to ET-1 is influenced by physical activity in a gender-dependent manner. It is unclear why the contractile sensitivity in females was not reduced by Ex as in the males, because Ex significantly affected responses to TEA and ET-1 stimulation of [(32)P]PA production in both males and females. A potential gender difference in K-channel function may contribute to this discrepancy.
We believe that both tamsulosin and nifedipine prevent the disorganized antiperistalsis associated with ureteral spasm while allowing some degree of antegrade fluid-bolus (stone) propagation. It is this mechanism of action that facilitates spontaneous passage and reduces associated renal colic when tamsulosin and nifedipine are used for the management of ureteral stone disease.
Adenosine (ADO), an endogenous regulator of coronary vascular tone, enhances vasorelaxation in the presence of nucleoside transport inhibitors such as dipyridamole. We tested the hypothesis that coronary smooth muscle (CSM) contains a high-affinity transporter for ADO. ADO-mediated relaxation of isolated large and small porcine coronary artery rings was enhanced 12-fold and 3.4-fold, respectively, by the transport inhibitor, S-(4-nitrobenzyl)-6-thioinosine (NBTI). Enhanced relaxation was independent of endothelium and was selective for ADO over synthetic analogs. Uptake of [(3)H]ADO into freshly dissociated CSM cells or endothelium-denuded rings was linear and concentration dependent. Kinetic analysis yielded a maximum uptake (V(max)) of 67 +/- 7.0 pmol. mg protein(-1). min(-1) and a Michaelis constant (K(m)) of 10. 5 +/- 5.8 microM in isolated cells and a V(max) of 5.1 +/- 0.5 pmol. min(-1). mg wet wt(-1) and a K(m) of 17.6 +/- 2.6 microM in intact rings. NBTI inhibited transport into small arteries (IC(50) = 42 nM) and cells. Analyses of extracellular space and diffusion kinetics using [(3)H]sucrose indicate the V(max) and K(m) for ADO transport are sufficient to clear a significant amount of extracellular adenosine. These data indicate CSM possess a high-affinity nucleoside transporter and that the activity of this transporter is sufficient to modulate ADO sensitivity of large and small coronary arteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.