The aim of the present work was to estimate the feasibility of selective laser melting (SLM) to produce Ti-hydroxyapatite bioactive composite materials for personalised endosseous implants. Mixtures of Ti6Al7Nb surface conditioned powder with hydroxyapatite up to 5 vol.-% were processed by SLM with the same scanning strategy and laser power in the range of 50-200 W. Specimens with porous structures were characterised from a structural and mechanical point of view. Irrespective to the initial hydroxyapatite content, density increased by increasing the laser power. The microstructure of manufactured parts mainly consisted of a9 martensite. In materials with 5 vol.-% hydroxyapatite, a phosphorous containing phase formed as a consequence of hydroxyapatite decomposition and interaction with the base Ti alloy. By increasing the laser power, the tensile strength increased mainly due to the density improvement of all the investigated materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.