We investigate the inverse problem of numerically identifying unknown initial temperatures in a heat equation with dynamic boundary conditions whenever some overdetermination data is provided after a final time. This is a backward parabolic problem which is severely ill-posed. As a first step, the problem is reformulated as an optimization problem with an associated cost functional. Using the weak solution approach, an explicit formula for the Fréchet gradient of the cost functional is derived from the corresponding sensitivity and adjoint problems. Then the Lipschitz continuity of the gradient is proved. Next, further spectral properties of the input-output operator are established. Finally, the numerical results for noisy measured data are performed using the regularization framework and the conjugate gradient method. We consider both one-and two-dimensional numerical experiments using finite difference discretization to illustrate the efficiency of the designed algorithm. Aside from dealing with a time derivative on the boundary, the presence of a boundary diffusion makes the analysis more complicated. This issue is handled in the 2-D case by considering the polar coordinate system. The presented method implies fast numerical results.
This paper studies an inverse hyperbolic problem for the wave equation with dynamic boundary conditions. It consists of determining some forcing terms from the final overdetermination of the displacement. First, the Fréchet differentiability of the Tikhonov functional is studied, and a gradient formula is obtained via the solution of an associated adjoint problem. Then, the Lipschitz continuity of the gradient is proved. Furthermore, the existence and the uniqueness for the minimization problem are discussed. Finally, some numerical experiments for the reconstruction of an internal wave force are implemented via a conjugate gradient algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.