Matter-wave interference experiments enable us to study matter at its most
basic, quantum level and form the basis of high-precision sensors for
applications such as inertial and gravitational field sensing. Success in both
of these pursuits requires the development of atom-optical elements that can
manipulate matter waves at the same time as preserving their coherence and
phase. Here, we present an integrated interferometer based on a simple,
coherent matter-wave beam splitter constructed on an atom chip. Through the use
of radio-frequency-induced adiabatic double-well potentials, we demonstrate the
splitting of Bose-Einstein condensates into two clouds separated by distances
ranging from 3 to 80 microns, enabling access to both tunnelling and isolated
regimes. Moreover, by analysing the interference patterns formed by combining
two clouds of ultracold atoms originating from a single condensate, we measure
the deterministic phase evolution throughout the splitting process. We show
that we can control the relative phase between the two fully separated samples
and that our beam splitter is phase-preserving
Adiabatic dressed state potentials are created when magnetic sub-states of trapped atoms are coupled by a radio frequency field. We discuss their theoretical foundations and point out fundamental advantages over potentials purely based on static fields. The enhanced flexibility enables one to implement numerous novel configurations, including double wells, Mach-Zehnder and Sagnac interferometers which even allows for internal state-dependent atom manipulation. These can be realized using simple and highly integrated wire geometries on atom chips.
Today's magnetic-field sensors are not capable of making measurements with both high spatial resolution and good field sensitivity. For example, magnetic force microscopy allows the investigation of magnetic structures with a spatial resolution in the nanometre range, but with low sensitivity, whereas SQUIDs and atomic magnetometers enable extremely sensitive magnetic-field measurements to be made, but at low resolution. Here we use one-dimensional Bose-Einstein condensates in a microscopic field-imaging technique that combines high spatial resolution (within 3 micrometres) with high field sensitivity (300 picotesla).
We show that previously observed large disorder potentials in magnetic microtraps for neutral atoms are reduced by about two orders of magnitude when using atom chips with lithographically fabricated high quality gold layers. Using one dimensional Bose-Einstein condensates, we probe the remaining magnetic field variations at surface distances down to a few microns. Measurements on a 100 µm wide wire imply that residual variations of the current flow result from local properties of the wire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.