Thaxtomin A, a key phytotoxin produced by plant pathogenic Streptomyces sp., is implicit in common scab disease expression in potato. Primary targets and modes of action of thaxtomin A toxicity in plant cells are not well understood. In this work, early signalling events associated with thaxtomin A toxicity were studied using the ion-selective microelectrode ion flux estimation (MIFE) technique. Thaxtomin A-induced changes in net ion fluxes were measured across the plasma membrane (PM) of root and pollen tube tissue in Arabidopsis thaliana and tomato. Within a minute after toxin application, a rapid and short-lived Ca2+ influx was observed. Well ahead of the marked inhibition of root growth, a significant shift towards net H+ efflux across the PM occurred in all tissues. Similar to root tissues, thaxtomin A significantly modified ion flux profiles from growing pollen tubes. Thaxtomin A was more effective in young, physiologically active tissues (root elongation zone or pollen tube apex), suggesting a higher density of thaxtomin A-binding sites in these regions. Overall, our data provide the first evidence that thaxtomin A triggers an early signalling cascade, which may be crucial in plant-pathogen interactions. It also suggests a possible interaction between thaxtomin A and PM auxin receptors, as revealed from experiments on the auxin-sensitive ucu2-2/gi2 A. thaliana mutant.
The test of accelerated aging of seeds (AAS) was applied on 7 genotypes of durum wheat, and the morphophysiological parameters of seeds and seedlings, such as dynamics of seed germination, length of seedling roots, fresh and dry biomass of seedlings, were investigated. The genotypic features of collection samples of durum wheat were identified after exposure to stress factors (high temperature and humidity). Such a grouping of genotypes according to their potential ability to preserve the viability of seeds is an important complex characteristic of collection samples when they are placed for long-term storage in a plant gene bank.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.