ABSTRACT:In photogrammetry a camera is considered calibrated if its interior orientation parameters are known. These encompass the principal distance, the principal point position and some Additional Parameters used to model possible systematic errors. The current state of the art for automated camera calibration relies on the use of coded targets to accurately determine the image correspondences. This paper presents a new methodology for the efficient and rigorous photogrammetric calibration of digital cameras which does not require any longer the use of targets. A set of images depicting a scene with a good texture are sufficient for the extraction of natural corresponding image points. These are automatically matched with feature-based approaches and robust estimation techniques. The successive photogrammetric bundle adjustment retrieves the unknown camera parameters and their theoretical accuracies. Examples, considerations and comparisons with real data and different case studies are illustrated to show the potentialities of the proposed methodology.
ABSTRACT:Throughout history the link between geometry and architecture has been strong and while architects have used mathematics to construct their buildings, geometry has always been the essential tool allowing them to choose spatial shapes which are aesthetically appropriate. Sometimes it is geometry which drives architectural choices, but at other times it is architectural innovation which facilitates the emergence of new ideas in geometry. Among the best known types of geometry (Euclidean, projective, analytical, Topology, descriptive, fractal,…) those most frequently employed in architectural design are:The non-Euclidean geometries. Entire architectural periods are linked to specific types of geometry. Euclidean geometry, for example, was the basis for architectural styles from Antiquity through to the Romanesque period. Perspective and Projective geometry, for their part, were important from the Gothic period through the Renaissance and into the Baroque and Neo-classical eras, while non-Euclidean geometries characterize modern architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.