Modern communication networks are based on multi-service networks, which are a single telecommunications structure that can transmit large volumes of multi-format information (voice, video, data) and provide users with a variety of information and communication services. Traffic transmitted in multiservice networks differs significantly from traditional traffic of telephone or other homogeneous networks. Knowledge of the nature of modern traffic is necessary for the successful construction, operation and development of multi-service communication networks, providing users with high-quality services, and efficient use of funds allocated for network development. To learn the properties of infocommunication traffic, new methodological techniques are currently used, as well as promising information technologies such as Big Data and data mining. The article is devoted to the use of such elements of artificial intelligence as expert systems and neural network technologies in relation to the analysis of infocommunication traffic. The article examines the structure of expert systems, analyzes the applied search strategies and decision-making methods. The article also provides an overview of the architecture of neural networks in relation to traffic analysis tasks. The traffic analysis task is a classification task. The feasibility of using multi-layer neural networks with direct signal propagation for traffic analysis is shown. The following neural network architecture was chosen: the input layer, in accordance with the dimension of the input signal, contained 51 neurons, two hidden layers with 20 and 10 neurons, respectively, and the output layer with five neurons, according to the number of specified types of distributions. The results obtained showed a satisfactory quality of the neural network developed and trained in the framework of the research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.