We have developed a new synthesis strategy to prepare ∼5 nm metallic silver nanoparticles (AgNPs) supported on tungsten oxide (WO 3 ) nanorods with diameters between 40 and 60 nm in the presence of a cationic surfactant, cetyltrimethylammonium bromide (CTAB). The catalyst was characterized by XRD, XPS, ICP-AES, FT-IR, Raman spectroscopy, EXAFS, SEM and TEM. The catalyst is very effective in liquid phase oxidation of cyclohexene to adipic acid with hydrogen peroxide as an oxidant. The synergy between the surface AgNPs and WO 3 nanorods plays the most vital role towards this very high catalytic activity. The reusability of the catalyst which is a prerequisite for practical applications was analysed and it was found that the catalyst exhibits no significant changes in its catalytic activity even after five cycles of reuse. A cyclohexene conversion of >99.9% with an adipic acid selectivity of ∼94% was achieved over ∼5 nm AgNPs supported on the WO 3 nanorod catalyst with a very high turnover frequency of ∼12 h −1 . † Electronic supplementary information (ESI) available. See
A material consisting of highly dispersed Cu nanoclusters anchored on nanocrystalline SiO2-MnO2 has been prepared, and was found to act as a bifunctional catalyst for the one-step conversion of glycerol to acrylic acid using H2O2. Under optimized conditions a glycerol conversion of 77.1%, with 74.7% selectivity for acrylic acid, was achieved after 30 h reaction time.
Tungsten loaded mesoporous nitrogen rich carbon materials were synthesized using SBA-15 as a hard template and these multifunctional materials ware successfully applied for oxidative coupling of aniline as well as desulfurization of dibenzothiophene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.