Alpha-synuclein (alphaS) is a cytosolic protein involved in the etiology of Parkinson's disease (PD). Disordered in an aqueous environment, alphaS develops a highly helical conformation when bound to membranes having a negatively charged surface and a large curvature. It exhibits a membrane-permeabilizing activity that has been attributed to oligomeric protofibrillar forms. In this study, monomeric wild-type alphaS and two mutants associated with familial PD, E46K and A53T, formed ion channels with well-defined conductance states in membranes containing 25-50% anionic lipid and 50% phosphatidylethanolamine (PE) in the presence of a trans-negative potential. Another familial mutant, A30P, known to have a lower membrane affinity, did not form ion channels. Ca2+ prevented channel formation when added to membranes before alphaS and decreased channel conductance when added to preformed channels. In contrast to the monomer, membrane permeabilization by oligomeric alphaS was not characterized by formation of discrete channels, a requirement for PE lipid, or a membrane potential. Channel activity, alpha-helical content, thermal stability of membrane-bound alphaS determined by far-UV CD, and lateral mobility of alphaS bound to planar membranes measured by fluorescence correlation spectroscopy were correlated. It was inferred that discrete ion channels with well-defined conductance states were formed in the presence of a membrane potential by one or several molecules of monomeric alphaS in an alpha-helical conformation and that such channels may have a role in the normal function and/or pathophysiology of the protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.