The imaging telescope on board the Transition Region and Coronal Explorer (TRACE) spacecraft observed the decaying transversal oscillations of a long [(130 +/- 6) x 10(6) meters], thin [diameter (2.0 +/- 0.36) x 10(6) meters], bright coronal loop in the 171 angstrom Fe(IX) emission line. The oscillations were excited by a solar flare in the adjacent active region. The decay time of the oscillations is 14.5 +/- 2.7 minutes for an oscillation with a frequency 3.90 +/- 0.13 millihertz. The coronal dissipation coefficient is estimated to be eight to nine orders of magnitude larger than the theoretically predicted classical value. The larger dissipation coefficient may solve existing difficulties with wave heating and reconnection theories.
Abstract. We develop a new method for the determination of the absolute value of the magnetic field strength in coronal closed magnetic structures, based on the analysis of flare-generated oscillations of coronal loops. Interpretation of the oscillations observed in terms of global standing kink waves allows to connect the period of the oscillations and the loops length with the magnetic field strength in the loops. For loop oscillations observed with TRACE on 14th July 1998 and 4th July 1999, we estimate the magnetic field strength as 4-30 G. Using TRACE 171Å and 195Å images of the loop, taken on 4th July 1999 to determine the plasma density, we estimate the magnetic field in the loop as 13 ± 9 G. Improved diagnostic of the loop length, the oscillation period, and the plasma density in the loop will significantly improve the method's precision.
TRACE observations from 15 April 2001 of transverse oscillations in coronal loops of a post-flare loop arcade are investigated. They are considered to be standing fast kink oscillations. Oscillation signatures such as displacement amplitude, period, phase and damping time are deduced from 9 loops as a function of distance along the loop length. Multiple oscillation modes are found with different amplitude profile along the loop length, suggesting the presence of a second harmonic. The damping times are consistent with the hypothesis of phase mixing and resonant absorption, although there is a clear bias towards longer damping times compared with previous studies. The coronal magnetic field strength and coronal shear viscosity in the loop arcade are derived.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.