Tomato-infecting begomoviruses have been reported throughout Brazil since the introduction of the B biotype of Bemisia tabaci. Here, we report a large scale survey on the distribution and genetic diversity of tomato-infecting begomoviruses. Tomato samples with typical begomovirus symptoms were collected in seven different states, comprising the major tomato growing areas of the country. Viruses were detected by polymerase chain reaction (PCR) using universal primers for the genus Begomovirus. PCR-amplified fragments were cloned and sequenced. Based on sequence comparisons and phylogenetic analyses, at least seven previously undescribed species of begomoviruses were found. Four of the new viruses were found exclusively in the Southeastern states, two exclusively in the Northeastern states, and one was found in both regions. Sequence comparisons reveal strong evidence of recombination among the Brazilian begomoviruses. Together, the results indicate the existence of a high degree of pre-existing genetic diversity among tomato-infecting begomoviruses in Brazil and suggest that these viruses have emerged after being transferred from natural hosts to tomatoes, due to the introduction into Brazil of a novel polyfagous biotype of the whitefly vector.
The genetic diversity of begomovirus isolates from tomato (Lycopersicon esculentum) fields in the Southeastern region of Brazil was analyzed by direct sequencing of PCR fragments amplified by using universal oligonucleotides for the begomovirus DNA-A, and subsequent computer-aided phylogenetic analysis. Samples of tomato plants and associated weeds showing typical symptoms of virus infection were collected at seven locations in the states of Minas Gerais, Espírito Santo and Rio de Janeiro. A total of 137 out of 369 samples were infected with a begomovirus based on PCR analysis. Phylogenetic analysis indicated a high degree of genetic diversity among begomoviruses infecting tomatoes in the sampled area. One species (Tomato chlorotic mottle virus, TCMV) occurs predominantly in Minas Gerais, whereas in Rio de Janeiro and Espírito Santo a distinct species, not yet fully characterized, predominates. Phylogenetic analysis further indicates the presence of an additional four possible new species. This high degree of genetic diversity suggests a recent transfer of indigenous begomovirus from wild hosts into tomatoes. The close phylogenetic relationship verified between begomovirus infecting tomato and associated weeds favors this hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.