100 ppm PH3 diluted in hydrogen is used as the n-type dopant gas in Si and Si1−xGex epilayers grown by ultrahigh vacuum chemical vapor deposition (UHVCVD) using Si2H6 and GeH4. The phosphorus concentration in Si increases linearly at a small PH3 flow rate and becomes nearly saturated at higher flow rates, while the phosphorus concentration in Si1−xGex only shows a nearly linear behavior with PH3 flow rate. The growth rates of Si and Si1−xGex epilayers decrease seriously (∼50%) and slightly (∼10%) with the increase of PH3 flow rate, respectively. These results can be explained by a model based on the enhancement of hydrogen desorption rate at smaller PH3 flow rates and different levels of the effects of phosphorus blocking of surface-activated sites between Si and Si1−xGex epilayers at higher PH3 flow rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.