Compact optimized stellarators offer novel solutions for confining high-β plasmas and developing magnetic confinement fusion. The three-dimensional plasma shape can be designed to enhance the magnetohydrodynamic (MHD) stability without feedback or nearby conducting structures and provide driftorbit confinement similar to tokamaks. These configurations offer the possibility of combining the steady-state low-recirculating power, external control, and disruption resilience of previous stellarators with the low aspect ratio, high β limit, and good confinement of advanced tokamaks. Quasiaxisymmetric equilibria have been developed for the proposed National Compact Stellarator Experiment (NCSX) with average aspect ratio 4-4.4 and average elongation ∼1.8. Even with bootstrap-current consistent profiles, they are passively stable to the ballooning, kink, vertical, Mercier, and neoclassicaltearing modes for β > 4%, without the need for external feedback or conducting walls. The bootstrap current generates only 1/4 of the magnetic rotational transform at β = 4% (the rest is from the coils); thus the equilibrium is much less non-linear and is more controllable than similar advanced tokamaks. The enhanced stability is a result of 'reversed' global shear, the spatial distribution of local shear, and the large fraction of externally generated transform. Transport simulations show adequate fast-ion confinement and thermal neoclassical transport similar to equivalent tokamaks. Modular coils have been designed which reproduce the physics properties, provide good flux surfaces, and allow flexible variation of the plasma shape to control the predicted MHD stability and transport properties.
New classes of quasi-helically symmetric stellarators with aspect ratios ≤ 10 have been found which are stable to the perturbation of magnetohydrodynamic modes at plasma pressures of practical interest. These configurations have large rotational transform and good quality of flux surfaces. Characteristics of some selected examples are discussed in detail. The feasibility of using modular coils for these stellarators has been investigated. It is shown that practical designs for modular coils can be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.